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Fixed versus random design
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L0 performance
Denote by B0(k) the ℓ0 “ball" of Rd , i.e., the set of k-sparse vectors,
defined by

B0(k) = {θ ∈ Rd : |θ|0 ≤ k}.

Our goal is to control the MSE of θ̂LSK when K = B0(k). Note that
computing θ̂LSB0(k)

is to find:

θ̂LS
B0(k)

∈ argmin
θ∈B0(k)

|Y − Xθ|22,

but this would require computing
(d
k

)
least squares estimators.
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Best subset selection

Theorem
Fix a positive integer k ≤ d/2. Let K = B0(k) be set of k-sparse vectors
of Rd , assume that θ∗ ∈ B0(k) and assume that the linear model with
ε ∼ subGn(σ

2). Then, for any δ > 0, with probability 1 − δ, it holds

MSE(Xθ̂ISB0(k)
) ≲

kσ2

n
log

(
ed

2k

)
+ log(6)

σ2k

n
+

σ2

n
log(1/δ).

Note that if we knew the exact sparsity level k0, then this bound would be
essentially optimal.
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Matching rates for LASSO?
Assumption INC(k) We say that the design matrix X has incoherence k
for some integer k > 0 if ∣∣∣∣XTX

n
− Id

∣∣∣∣
∞

≤ 1
32k

where the |A|∞ denotes the largest element of A in absolute value.
Equivalently,

1 For all j = 1, . . . , d , ∣∣∣∣∥Xj∥2
2

n
− 1
∣∣∣∣ ≤ 1

32k
.

2 For all 1 ≤ i , j ≤ d , i ̸= j , we have

|XT
i Xj |
n

≤ 1
32k

.
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Technical Lemma

Lemma
Fix a positive integer k ≤ d and assume that X satisfies assumption
INC(k). Then, for any S ∈ {1, . . . , d} such that |S | ≤ k and any θ ∈ Rd

that satisfies the cone condition

|θSc |1 ≤ 3|θS |1,

it holds

|θ|22 ≤ 2
|Xθ|22
n

.

We will interpret the cone condition when we consider sparse recovery.
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LASSO

Theorem
Fix n ≥ 2. Assume that the linear model with ε ∼ subGn(σ

2). Moreover,
assume that ∥θ∗∥0 ≤ k and that X satisfies assumption INC(k). Then the
Lasso estimator θ̂L with regularization parameter defined by

2τ = 8σ

√
log(2d)

n
+ 8σ

√
log(1/δ)

n

satisfies
MSE(Xθ̂L) =

1
n
∥Xθ̂L − Xθ∗∥2

2 ≲ kσ2 log(2d/δ)
n

.

and
∥θ̂L − θ∗∥2

2 ≲ kσ2 log(2d/δ)
n

.

with probability at least 1 − δ.
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Proof
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Proof Cont.
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Optimal rate (MSE) - SLOPE

Definition
(Slope estimator). Let λ = (λ1, . . . , λd) be a non-increasing sequence of
positive real numbers, λ1 ≥ λ2 ≥ · · · ≥ λd > 0. For θ = (θ1, . . . , θd) ∈ Rd , let
(θ∗1 , . . . , θ

∗
d) be a non-increasing rearrangement of the modulus of the entries,

|θ1|, . . . , |θd |. We define the sorted ℓ1 norm of θ as

|θ|∗ =
d∑

j=1

λjθ
∗
j ,

or equivalently as

|θ|∗ = max
ϕ∈Sd

d∑
j=1

λj |θϕ(j)|.
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Cont.

Definition
The Slope estimator is then given by

θ̂S ∈ arg min
θ∈Rd

{
1
n
∥Y − Xθ∥2

2 + 2τ |θ|∗
}

for a choice of tuning parameters λ and τ > 0.

In what follows, we use

λj =
√
log(2d/j), j = 1, . . . , d .
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MSE - SLOPE

Theorem
Fix n ≥ 2. Assume that the linear model holds where ε ∼ Nn(0, σ2In).
Moreover, assume that |θ∗|0 ≤ k and that X satisfies assumption INC(k ′)
with k ′ ≥ 4k log(2de/k). Then the Slope estimator θ̂S with regularization
parameter defined by

τ = 8
√

2σ

√
log(1/δ)

n

satisfies
MSE(Xθ̂S) =

1
n
∥Xθ̂S − Xθ∗∥2

2 ≲ σ2 k log(2d/kδ)
n

and
∥θ̂S − θ∗∥2

2 ≲ σ2 k log(2d/k) log(1/δ)
n

.

with probability at least 1 − δ.
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Why sparsity - selection of Gaussian graphical models
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Basis pursuit
Before we begin with the sparse recovery of the noisy version of the
problem, let us think about the deterministic version of the problem.
Suppose that you are asked to solve the following system of equations for θ:

Xθ = Y .
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Restricted nullspace
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Restricted nullspace illustration

Image taken from High-Dimensional Statistics by Martin Wainwright.
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Restricted null space
Let:

C (S) := {δ ∈ Rd : ∥∆Sc∥ ≤ ∥∆S∥1}

Definition
Restricted nullspace The matrix X satisfies the restricted nullspace
property with respect to S if C (S) ∩ null(X ) = {0}.
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Unique solution - basis pursuit

Theorem
The following two properties are equivalent:
(a) For any vector θ∗ ∈ Rd with support S , the basis pursuit program

(7.9) applied with y = Xθ∗ has unique solution θ̂ = θ∗.
(b) The matrix X satisfies the restricted nullspace property with respect

to S .
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Proof
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Restricted isometry

Proposition
If ∣∣∣∣XTX

n
− Id

∣∣∣∣
∞

≤ 1
3k

,

then the restrict null space condition holds for all subsets of cardinality at
most k .
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RIP

Definition
For an integer k , X ∈ Rn×d satisfies a restricted isometry property of order
k with constant δk(X ) > 0 if∥∥∥∥X⊤

S XS

n
− Ik

∥∥∥∥
op

≤ δk(X )

for all subsets of size at most k .

Proposition
If the RIP constant of order 2k is bounded as δ2k < 1/3, then the
restricted null space condition holds for any subset S of cardinality |S | ≤ k .
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Assumptions

Assumption
The smallest eigenvalue of the sample covariance submatrix indexed by S is
bounded below:

γmin

(
XT
S XS

n

)
≥ cmin > 0.

Assumption
There exists some α ∈ [0, 1) such that

max
j∈Sc

||(XT
S XS)

−1XT
S Xj ||1 ≤ α.
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LASSO

Theorem
Consider an S-sparse linear regression model for which the design matrix satisfies Assumptions 2 and 3. Then for
any choice of regularization parameter such that

λn ≥
2

1 − α

∥∥∥∥∥XT
S Π

S⊥ (X)
ϵ

n

∥∥∥∥∥
∞

, (1)

the Lasso program has the following properties:

(a) Uniqueness: There is a unique optimal solution θ̂.

(b) No false inclusion: This solution has its support set Ŝ contained within the true support set S.

(c) ℓ∞-bounds: The error θ̂ − θ∗ satisfies

∥θ̂S − θ
∗
S ∥∞ ≤

∥∥∥∥∥(XT
S XS

n

)−1
XT
S

ϵ

n

∥∥∥∥∥
∞

+

∥∥∥∥∥(XT
S XS

n

)−1
∥∥∥∥∥
∞

λn, (2)

where ∥A∥∞ = maxi=1,...,s
∑

j |Ai,j | is the matrix ℓ∞-norm.

(d) No false exclusion: The Lasso includes all indices i ∈ S such that |θ∗i | > B(λn ;X), and hence is variable
selection consistent if mini∈S |θ∗i | > B(λn ;X).
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Corollary
For a S-sparse linear model based on a noise vector ϵ with zero-mean i.i.d.
σ-sub-Gaussian entries, and a deterministic design matrix X that satisfies
Assumptions 2 and 3, as well as the C -column normalization condition
maxj=1,...,d ∥Xj∥2/

√
n ≤ C . Suppose that we solve the Lasso program with

regularization parameter

λn =
2Cσ

1 − α

{√
2 log(d − k)

n
+ δ

}

for some δ > 0. Then the optimal solution θ̂ is unique with its support
contained within S , and satisfies the ℓ∞-error bound

∥θ̂S − θ∗S∥∞ ≤ σ
√
cmin

(√
2 log s

n
+ δ

)
+

∥∥∥∥∥
(

XT
S XS

n

)−1
∥∥∥∥∥
∞

λn, (3)

all with probability at least 1 − 4e−nδ2/2.
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Proof
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Sub-gradients
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Primal Dual Witness

Definition
Primal–dual witness (PDW) construction:

1 Set θ̂Sc = 0.
2 Determine (θ̂S , ẑS) ∈ Rs × Rs by solving the oracle subproblem

θ̂S ∈ arg min
θS∈Rs


1
2n

∥y − XSθS∥2
2 + λn∥θS∥1︸ ︷︷ ︸

=:f (θS )

 , (4)

and then choosing ẑS ∈ ∂∥θ̂S∥1 such that ∇f (θS)
∣∣
θS=θ̂S

+ λnẑS = 0.

3 Solve for ẑSc ∈ Rd−s via the zero-subgradient equation, and check
whether or not the strict dual feasibility condition ∥ẑSc∥∞ < 1 holds.
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Witness for LASSO

Lemma
If the lower eigenvalue condition holds, then success of the PDW
construction implies that the vector (θ̂S , 0) ∈ Rd is the unique optimal
solution of the Lasso.
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Proof
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Proof of main theorem
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