High Dimensional Statistics

Yanbo Tang

Imperial College London

March. 2025

Content of this week

- LASSO sparse set recovery (PDW)
- Matrix concentration ||A||_{op}
 Spectral clustering on Rodom glaphs
 Matrix Bernstein || Z A c ||_{op}
 Covariance estimation = X:X

LASSO

Theorem

Consider an S-sparse linear regression model for which the design matrix satisfies Assumptions 2 and 3. Then for any choice of regularization parameter such that

$$\lambda_n \ge \frac{2}{1-\alpha} \left\| X_{\mathcal{S}}^{\mathsf{T}} \mathsf{\Pi}_{\mathcal{S}^{\perp}}(\mathsf{X}) \frac{\epsilon}{n} \right\|_{\infty},\tag{1}$$

the Lasso program has the following properties:

- (a) Uniqueness: There is a unique optimal solution $\hat{\theta}$.
- (b) No false inclusion: This solution has its support set \hat{S} contained within the true support set S.
- (c) ℓ_{∞} -bounds: The error $\hat{\theta} \theta^*$ satisfies

$$\|\hat{\theta}_{S} - \theta_{S}^{*}\|_{\infty} \leq \left\| \left(\frac{X_{S}^{T} X_{S}}{n}\right)^{-1} X_{S}^{T} \frac{\epsilon}{n} \right\|_{\infty} + \left\| \left(\frac{X_{S}^{T} X_{S}}{n}\right)^{-1} \right\|_{\infty} \lambda_{n},$$

$$\tag{2}$$

where $||A||_{\infty} = \max_{i=1,...,s} \sum_{j} |A_{i,j}|$ is the matrix ℓ_{∞} -norm.

(d) No false exclusion: The Lasso includes all indices $i \in S$ such that $|\theta_i^*| > B(\lambda_n; X)$, and hence is variable selection consistent if $\min_{i \in S} |\theta_i^*| > B(\lambda_n; X)$.

Corollary

For a S-sparse linear model based on a noise vector ϵ with zero-mean i.i.d. σ -sub-Gaussian entries, and a deterministic design matrix X that satisfies Assumptions 2 and 3, as well as the C-column normalization condition $\max_{j=1,...,d} \|X_j\|_2 / \sqrt{n} \leq C$. Suppose that we solve the Lasso program with regularization parameter

$$\lambda_n = \frac{2C\sigma}{1-\alpha} \left\{ \sqrt{\frac{2\log(d-k)}{n}} + \delta \right\}$$

for some $\delta > 0$. Then the optimal solution $\hat{\theta}$ is unique with its support contained within S, and satisfies the ℓ_{∞} -error bound

$$\|\widehat{\theta}_{S} - \theta_{S}^{*}\|_{\infty} \leq \frac{\sigma}{\sqrt{c_{\min}}} \left(\sqrt{\frac{2\log s}{n}} + \delta \right) + \left\| \left(\frac{\mathsf{X}_{S}^{T}\mathsf{X}_{S}}{n} \right)^{-1} \right\|_{\infty} \lambda_{n}, \qquad (3)$$

all with probability at least $1 - 4e^{-n\delta^2/2}$.

Proof

Conver function f: 12 dr-7/R Sub-gradients We say ZE/Rd is a sub-gradient "1 f at (8) f(OtA) Zf(0) t <Z, ~> Ha C/Rd then ZEZ (10) (be song a poir (0,2) is primal-Dual optimal if 1) & 15 a minimizer 2) ZEZ11011 Z; EI-1, 17 $\frac{1}{2}\chi^{T}(\chi\hat{G}-\chi)+\lambda_{T}\hat{Z}=0$

Primal Dual Witness

Definition

Primal-dual witness (PDW) construction:

• Set
$$\hat{\theta}_{S^c} = 0$$
.

2 Determine $(\widehat{\theta}_S, \widehat{z}_S) \in \mathbb{R}^s \times \mathbb{R}^s$ by solving the *oracle subproblem*

$$\widehat{\theta}_{S} \in \arg\min_{\theta_{S} \in \mathbb{R}^{s}} \left\{ \underbrace{\frac{1}{2n} \|\mathbf{y} - \mathbf{X}_{S} \theta_{S}\|_{2}^{2} + \lambda_{n} \|\theta_{S}\|_{1}}_{=:f(\theta_{S})} \right\},$$
(4)

and then choosing $\widehat{z}_{S} \in \partial \|\widehat{\theta}_{S}\|_{1}$ such that $\nabla f(\theta_{S})|_{\theta_{S} = \widehat{\theta}_{S}} + \lambda_{n}\widehat{z}_{S} = 0$.

③ Solve for $\hat{z}_{S^c} \in \mathbb{R}^{d-s}$ via the zero-subgradient equation, and check whether or not the *strict dual feasibility* condition $\|\hat{z}_{S^c}\|_{\infty} < 1$ holds.

Witness for LASSO
$$\lambda_{min}\left(\frac{\chi_{5}^{7}\chi_{5}}{m}\right) > C_{min} > 0$$

Lemma

If the lower eigenvalue condition holds, then success of the PDW construction implies that the vector $(\hat{\theta}_S, 0) \in \mathbb{R}^d$ is the unique optimal solution of the Lasso.

State if
$$\vec{O}$$
 $||\vec{O}||_{1} \leq \chi \neq 1, \vec{O} \geq \leq ||\vec{Z}||_{\infty} ||\vec{O}||_{1} = |\vec{I}\vec{O}||_{1}$
 $\vec{Z}_{i} = -1, 1 \qquad \langle \neq 1, \vec{O} \rangle = ||\vec{O}||_{1}$
 $\vec{z}_{i} = -1, 1 \qquad \langle \neq 2, \vec{O} \rangle = ||\vec{O}||_{1}$
 $\vec{z}_{i} = -1, 1 \qquad \langle \neq 2, \vec{O} \rangle = ||\vec{O}||_{1}$
 $\vec{z}_{i} = -1, 1 \qquad \langle \neq 2, \vec{O} \rangle = ||\vec{O}||_{1}$
 $\vec{z}_{i} = -1, 1 \qquad \langle \neq 2, \vec{O} \rangle = ||\vec{O}||_{1}$
 $\vec{z}_{i} = -1, \vec{D} \qquad \langle \neq 2, \vec{O} \rangle = ||\vec{O}||_{1}$

Proof

Proof of main theorem

$$\frac{2}{Sc} = \frac{-1}{2} X_{S}^{T} X_{S} (\theta_{S} - \theta_{S}^{*}) \neq X_{S}^{T} (\frac{s}{2\pi n}) \quad (i)$$

$$\frac{2}{Sc} = \frac{-1}{2} X_{S} (X_{S})^{4} X_{S}^{T} \varepsilon - \lambda_{n} n (X_{S}^{T} X_{S})^{-1} \frac{s}{2s} \quad (2)$$

$$\frac{2}{Sc} = \frac{1}{2} \frac{1}{S} \frac{1}{S} \frac{1}{S} (X_{S})^{4} \frac{1}{2s} \varepsilon + \frac{1}{2s} \frac{1}{S} \frac{1}{S} \frac{1}{2s} \frac{$$

Yanbo Tang (Imperial College London)

Matrix Concentration

Some review

The Courant Fisher min-max theorem which states that:

$$\lambda_i(A) = \max_{dim(E)=i} \min_{x \in S(E)} x^\top A x$$

where the maximum is taken over all *i*-dimensional subspaces E of \mathbb{R}^n .

Some review

The Courant Fisher min-max theorem which states that:

$$\lambda_i(A) = \max_{dim(E)=i} \min_{x \in S(E)} x^\top A x$$

where the maximum is taken over all *i*-dimensional subspaces E of \mathbb{R}^n . Using this we can characterize the operator norm or the maximum singular value as follows:

$$\|A\|_{\mathcal{V}} := \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|Ax\|_2}{\|x\|_2} = \max_{x \in S^{n-1}} \|Ax\|_2.$$

Equivalently, the operator norm of A can be computed by maximizing the quadratic form $\langle Ax, y \rangle$ over all unit vectors x, y:

$$\|A\| = \max_{x \in S^{n-1}, y \in S^{m-1}} \langle Ax, y \rangle.$$

Controlling the operator norm

Lemma

Let A be an $m \times n$ matrix and $\varepsilon \in [0,1)$. Then, for any ε -net \mathcal{N} of the sphere S^{n-1} , we have

$$\begin{split} \sup_{x \in \mathcal{N}} \|Ax\|_{2} &\leq \|A\| \leq \frac{1}{1 - \varepsilon} \sup_{x \in \mathcal{N}} \|Ax\|_{2}. \\ \hline \text{Proof:} \quad fix \quad x \quad for \quad which \quad \|A\| = \|Ax\|_{2} \\ \hline \text{Choose} \quad \chi_{0} \in \mathcal{N} \quad where \quad \|X - X_{0}\|_{2} \leq \varepsilon \\ \quad \|Ax - Ax_{0}\|_{2} \leq \|A\| \quad \|X - X_{0}\|_{2} \leq \varepsilon \\ \quad \|Ax - Ax_{0}\|_{2} \leq \|A\| \quad \|X - X_{0}\|_{2} \leq \varepsilon \\ \quad \|Ax - Ax_{0}\|_{2} \leq \|A\| \quad \|X - X_{0}\|_{2} \leq \varepsilon \\ \quad \|A\| \leq \|A\| \\ \quad \|A\| \leq \sup_{x \in \mathcal{N}} \frac{\|Ax\|}{1 - \varepsilon} \\ \quad \|Ax\| \\ \quad \|A\| \leq \sup_{x \in \mathcal{N}} \frac{\|Ax\|}{1 - \varepsilon} \\ \end{split}$$

Proof

The actual lemma

Lemma

Let A be an $m \times n$ matrix and $\varepsilon \in [0,1)$. Then, for any ε -net \mathcal{N} of the sphere S^{n-1} and any ε -net \mathcal{M} of the sphere S^{m-1} , we have

$$\sup_{x \in \mathcal{N}} \sup_{y \in \mathcal{M}} y^{\top} A x \leq \|A\|_{\mathscr{B}} \leq \frac{1}{1 - 2\varepsilon} \sup_{x \in \mathcal{N}} \sup_{y \in \mathcal{M}} y^{\top} A x.$$

Random sub-Gaussian matrices

Theorem

Let A be an $m \times n$ random matrix whose entries A_{ij} are independent, mean zero, σ -sub-gaussian random variables. Then, for any t > 0 we have

$$\|A\| \le C\sigma \left(\sqrt{m} + \sqrt{n} + t\right)$$

with probability at least $1 - 2\exp(-t^2)$ for some constant C > 0.

Step 1: Approximation. Choose $\mathcal{E} = V_{4}$ then have $\mathcal{E} - \text{Net } \mathcal{N}(x)$ $\mathcal{E} - \text{Net } \mathcal{M}(y)$ $|\mathcal{N}| \leq q^{n}$ $|\mathcal{M}| \leq q^{m}$ $||\mathcal{A}|| \leq 2 \max_{\substack{K \in N_{r} \\ Y \in M}} \mathcal{L}A_{K,Y}^{2}$

 $\left(\begin{array}{c} \overbrace{z} \overbrace{z} \overbrace{z} A_{ij} A_{ij} A_{ij} \end{array} \right)$ Step 2: Concentration. $fix \quad x \in \mathcal{N} \quad cil \quad y \in \mathcal{N}$ $fix \quad x \in \mathcal{N} \quad cil \quad y \in \mathcal{N}$ $LAx_{i}y \quad 7^{2} \quad z = z = A_{ij} \quad \lambda_{i} \quad \lambda_{j} \quad is \quad a \quad s = c_{j} \quad independent \\ cil \quad j^{2} \quad i \quad c^{2} \quad j^{2} \quad c^{2} \quad s = b - Gaassians.$ $fix \quad x \in \mathcal{N} \quad x \in \mathcal{N} \quad x \in \mathcal{N}$ p(2Ar, y) = 12) ¿ exp(- (F))

Step 3: Union bound.

 $if \max_{X \in \mathcal{N}, y \in \mathcal{M}} \mathcal{L}Ax, y \geq \mathcal{I}$ $p(\max_{X \in \mathcal{N}, y \in \mathcal{M}} \mathcal{L}Ax, y \geq \mathcal{I}) \leq \mathcal{I} \mathcal{P}(\mathcal{L}Ax, y \geq \mathcal{I})$ $p(\max_{X \in \mathcal{N}, y \in \mathcal{M}} \mathcal{L}Ax, y \geq \mathcal{I}) \leq \mathcal{I} \mathcal{I} \mathcal{I}$ $\leq q^{hfm} \cdot 2 \exp\left(\frac{-\mu^2}{c\sigma^2}\right)$ u= CB (Vatum ff) then solve to get $\leq 2 \exp(-\epsilon^2)$

Application stochastic block model A12 Vi A27 Vi A27 Vi S G(n,p) G2(n,p;q) E[A] = [pp qq pp qq n/2 per group [qq pp] qq pp] 2 groups IELA] || ≈ N, IR || ≤ CIA A = EZAIFR $\lambda_{1} = (\underline{p+q}) \cdot \mathcal{N} \qquad \qquad \mathcal{A}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathcal{A}_{2} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ EGAl X3 20

Illustration

Figure 1: Taken from High Dimensional Probability by Roman Vershynin, with n = 200, p = 1/20 and q = 1/200.

Cont. Pavis kahan.

Theorem

Let S and T be symmetric matrices with the same dimensions. Fix i and assume that the i-th largest eigenvalue of S is well separated from the rest of the spectrum:

$$\min_{j:j\neq i} |\lambda_i(S) - \lambda_j(S)| = \delta > 0.$$

Then the angle between the eigenvectors of S and T corresponding to the *i*-th largest eigenvalues (as a number between 0 and $\pi/2$) satisfies

$$\sin \angle (v_i(S), v_i(T)) \leq rac{2\|S-T\|}{\delta}.$$

The conclusion of the Davis-Kahan theorem implies that the unit eigenvectors $v_i(S)$ and $v_i(T)$ are close to each other up to a sign, namely

$$\exists heta \in \{-1,1\} : \|v_i(S) - heta v_i(T)\|_2 \le rac{2^{3/2} \|S - T\|}{\delta}.$$

Cont. $\int = mor(\frac{p}{2}, q) \cdot n =: \mu \cdot n$ $70 \in \{-1, 1\}$: $||V_2(E(A)) - OV_2(A)||_2 \leq \frac{Con}{n - n} = \frac{C}{n \sqrt{n}}$ /- expc-n) $\| V_{\Delta}(E(A)) - \Theta V_{\Delta}(A) \| \leq \frac{C}{\mathcal{H}}$ $f_{f_{a}}$ number of mirden $\leq \frac{C}{\mu^2}$

Bernstein inequality for matrices

X,2MO,2)

Recall that we were able to use the fact that

$$E[\exp(t(X+Y))] = E[\exp(tX)\exp(tY)],$$

and use Chernoff's method if X and Y are real valued random variables. To generalize this approach we need to define what a *matrix exponential* means:

Bernstein inequality for matrices

Recall that we were able to use the fact that

$$E[\exp(t(X+Y))] = E[\exp(tX)\exp(tY)],$$

and use Chernoff's method if X and Y are real valued random variables. To generalize this approach we need to define what a *matrix exponential* means:

Definition

For a function $f : \mathbb{R} \to \mathbb{R}$ and an $n \times n$ symmetric matrix

$$X=\sum_{i=1}^n\lambda_iu_iu_i^{\top},$$

define

$$f(X) := \sum_{i=1}^n f(\lambda_i) u_i u_i^{\top}.$$

Yanbo Tang (Imperial College London)

Probability for Statistics

Matrix power series

For a convergent power series expansion of f about x_0 :

$$f(x) = \sum_{k=1}^{\infty} a_k (x - x_0)^k.$$

It is the case that series of matrix terms converges, and

$$f(X) = \sum_{k=1}^{\infty} a_k (X - x_0 I)^k.$$

As an example, for each $n \times n$ symmetric matrix X we have

$$e^{X} = I + X + \frac{X^{2}}{2!} + \frac{X^{3}}{3!} + \cdots$$

$$A \cdot B \leq 13 \cdot A$$

$$A \cdot B \leq 13 \cdot A$$

Generalization of exponential inequality

Theorem

(Golden-Thompson inequality). For any $n\times n$ symmetric matrices A and B, we have

$$tr(e^{A+B}) \leq tr(e^A e^B).$$

Unfortunately, Golden-Thompson inequality does not hold for three or more matrices: in general, the inequality $tr(e^{A+B+C}) \leq tr(e^A e^B e^C)$ may fail.

Theorem

(Lieb's inequality). Let H be an $n \times n$ symmetric matrix. Define the function on matrices

$$f(X) := tr \exp(H + \log X).$$

Then f is concave on the space on positive definite $n \times n$ symmetric matrices.

Cont.

Lemma

(Lieb's inequality for random matrices). Let H be a fixed $n \times n$ symmetric matrix and Z be a random $n \times n$ symmetric matrix. Then

 $\mathbb{E}tr\exp(H+Z) \leq tr\exp(H+\mathbb{E}Z).$

This follows by using Jensen's inequality.

Matrix Bernstein

Theorem

(Matrix Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \le K$ almost surely for all *i*. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{\left\|\sum_{i=1}^{N} X_{i}\right\| \geq t\right\} \leq 2n \exp\left(-\frac{t^{2}/2}{\sigma^{2} + Kt/3}\right).$$

Here $\sigma^2 = \left\|\sum_{i=1}^{N} \mathbb{E}X_i^2\right\|$ is the norm of the matrix variance of the sum.

Moment generating function of random matrices $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$

Lemma

(Moment generating function). Let X be an $n \times n$ symmetric mean zero random matrix such that $||X|| \leq K$ almost surely. Then

$$\mathbb{E} \exp(\lambda X) \preceq \exp(g(\lambda)\mathbb{E}X^2)$$
 where $g(\lambda) = \frac{\lambda^2/2}{1-|\lambda|K/3}$,

provided that $|\lambda| < 3/K$.

Matrix Bernsetein - Step 1: Reduction to MGF $\int := \sum_{i=1}^{N} \chi_{i}$ ||S|| = max | 2.(5) = max (2max (S), - 5/2/10) $\frac{\|S\| - m_{r}}{(z)} = p(e^{\lambda \lambda nax(s)} = e^{\lambda t})$ $= e^{-\lambda t} E E e^{\lambda \lambda naa(s)} A$ do max ? E = EEMmax(e^{AS})] = EE tr esp (AS)7

EZA7 Step 2: Application of Lieb's inequality EZ EZA 1877 $E \leq E I f_{T} \exp\left(\frac{\sum_{i=1}^{N-1} \lambda X_{i} + \lambda X_{i}}{\sum_{i=1}^{N-1} \lambda X_{i} + \lambda X_{i}}\right)$ Condition on $(X_i)_{i=1}^{N-1}$ apply lower with $H := \sum_{i=1}^{n-1} \chi_{X_i}$ ont puls z: => XN ≤ E tr eng(E AA; + lag EzeAM)]) = thep I = by (EE exis)] = tr exp(g(N) Z) Z = E EZX:] 2 n. Tack (exp(g(x) 2)) = n · exp (g() /my(z)) $= n - exp(g(\lambda) \sigma^2)$ then play back into \$ out avining get the

Yanbo Tang (Imperial College London)

Step 3: Using the MGF bound

Expectation

Lemma

(Matrix Bernstein's inequality: expectation). Let X_1, \ldots, X_N be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \leq K$ almost surely for all *i*.

$$\mathbb{E}\left\|\sum_{i=1}^{N} X_{i}\right\| \lesssim \left\|\sum_{i=1}^{N} \mathbb{E} X_{i}^{2}\right\|^{1/2} \sqrt{1 + \log n} + \mathcal{K}(1 + \log n).$$

General covariance estimation

We can estimate the second moment matrix $\Sigma = \mathbb{E}XX^T$ by its sample version

$$\Sigma_m = \frac{1}{m} \sum_{i=1}^m X_i X_i^{\mathsf{T}}.$$

Recall that if X has zero mean, then Σ is the covariance matrix of X and Σ_m is the sample covariance matrix of X.

General covariance estimation

Theorem

(General covariance estimation). Let X be a random vector in \mathbb{R}^n , $n \ge 2$. Assume that for some $K \ge 1$,

$$\|X\|_2 \le K(\mathbb{E}\|X\|_2)^{1/2}$$
 almost surely. (5.16)

Then, for every positive integer m, we have

$$\mathbb{E}\|\Sigma_m - \Sigma\| \leq C\left(\sqrt{\frac{K^2 n \log n}{m}} + \frac{K^2 n \log n}{m}\right) \|\Sigma\|.$$

Proof

Proof cont.