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Some useful matrix inequalities
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Matrix Bernstein

Theorem
(Matrix Bernstein’s inequality). Let X1, . . . ,XN be independent, mean
zero, n × n symmetric random matrices, such that ∥Xi∥ ≤ K almost surely
for all i . Then, for every t ≥ 0, we have

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n exp

(
− t2/2
σ2 + Kt/3

)
.

Here σ2 =
∥∥∥∑N

i=1 EX 2
i

∥∥∥ is the norm of the matrix variance of the sum.
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Expectation

Lemma
(Matrix Bernstein’s inequality: expectation). Let X1, . . . ,XN be
independent, mean zero, n × n symmetric random matrices, such that
∥Xi∥ ≤ K almost surely for all i .

E

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≲

∥∥∥∥∥
N∑
i=1

EX 2
i

∥∥∥∥∥
1/2√

1 + log n + K (1 + log n).
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Covariance estimation
We can estimate the second moment matrix Σ = EXXT by its sample
version

Σm =
1
m

m∑
i=1

XiX
T
i .

Recall that if X has zero mean, then Σ is the covariance matrix of X and
Σm is the sample covariance matrix of X .
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Covariance Estimation sub-Gaussian

Theorem
Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[YY⊤] = Id and
Y ∼ subGd(1). Let X1, . . . ,Xn be n independent copies of sub-Gaussian
random vector X = Σ1/2Y . Then E[X ] = 0, E[XX⊤] = Σ and
X ∼ subGd(∥Σ∥op). Moreover,

∥Σ̂− Σ∥op ≲ ∥Σ∥op

(√
d + log(1/δ)

n
∨ d + log(1/δ)

n

)
,

with probability 1 − δ.
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General covariance estimation

Theorem
(General covariance estimation). Let X be a random vector in Rn, n ≥ 2.
Assume that for some K ≥ 1,

∥X∥2 ≤ K (E∥X∥2)
1/2 almost surely. (5.16)

Then, for every positive integer m, we have

E∥Σm − Σ∥ ≲

(√
K 2n log n

m
+

K 2n log n

m

)
∥Σ∥.
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Proof
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Proof cont.
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A probability bound

Lemma
Under the same assumption as the previous theorem,we have

∥Σ̂− Σ∥ ≲

(√
K 2n(log n + log(2/δ))

m
+

K 2n(log n + log(2/δ))
m

)
∥Σ∥

with probability at least 1 − δ.
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PCA
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Eckart-Young-Mirsky

Lemma
Let A be a rank-r matrix with singular value decomposition

A =
r∑

i=1

λiuiv
⊤
i ,

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the ordered singular values of A. For
any k < r , let Ak =

∑k
i=1 λiuiv

⊤
i . Then for any matrix B such that

rank(B) ≤ k , it holds

∥A− Ak∥F ≤ ∥A− B∥F .

Moreover,

∥A− Ak∥2
F =

r∑
j=k+1

λ2
j .
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Proof
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Spiked covariance
For a fixed direction v ∈ Sd−1, and consider the sequence
Y1, . . . ,Yn ∼ N(0, Id), then the vectors v⊤Yiv all live in the one
dimensional space spanned by v . Typically we would have some noise in
our observations so that they will be closer to:

Xi = v⊤Yiv + Zi ,

for a noise vector Zi ∼ N(0, σ2Id). Note that the covariance matrix of Xi

will be:
Σ = E

[
XX⊤

]
= vv⊤ + σ2Id .
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Spiked covariance

Definition
A covariance matrix Σ ∈ Rd×d is a spiked covariance matrix if:

Σ = θvv⊤ + Id ,

for θ > 0 and v ∈ Sd−1. The vector v is called the spike.
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Davis Kahan reminder

Theorem
(Davis-Kahan) Let S and T be symmetric matrices with the same
dimensions. Fix i and assume that the i-th largest eigenvalue of S is well
separated from the rest of the spectrum:

min
j :j ̸=i

|λi (S)− λj(S)| = δ > 0.

Then the angle between the eigenvectors of S and T corresponding to the
i-th largest eigenvalues (as a number between 0 and π/2) satisfies

sin∠(vi (S), vi (T )) ≤ 2∥S − T∥
δ

.

which implies

∃θ ∈ {−1, 1} : ∥vi (S)− θvi (T )∥2 ≤ 23/2∥S − T∥
δ

.
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Guarantees

Corollary

Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[YY T ] = Id and
Y ∼ subGd(1). Let X1, . . . ,Xn be n independent copies of sub-Gaussian
random vector X = Σ1/2Y so that E[X ] = 0, E[XXT ] = Σ and
X ∼ subGd(∥Σ∥op). Assume further that Σ = θvvT + Id satisfies the
spiked covariance model. Then, the largest eigenvector v̂ of the empirical
covariance matrix Σ̂ satisfies,

min
e∈{+1}

∥ev̂ − v∥2 ≲
1 + θ

min(θ, 1)

(√
d + log(1/δ)

n
∨ d + log(1/δ)

n

)

with probability 1 − δ.
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Proof
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Sparse PCA
If we assume that v in the spiked covariance model is k-sparse: |v |0 = k .
Therefore, a natural candidate to estimate v is given by v̂ defined by

v̂⊤Σ̂v̂ = max
u∈Sd−1, |u|0=k

u⊤Σ̂u.

It is the case that λk
max(Σ̂) = v̂⊤Σ̂v̂ is the largest of all leading eigenvalues

among all k × k sub-matrices of Σ̂ so that the maximum is indeed attained.
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Sparse PCA

Theorem
Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[YY⊤] = Id and
Y ∼ subGd(1). Let X1, . . . ,Xn be n independent copies of sub-Gaussian
random vector X = Σ1/2Y so that E[X ] = 0, E[XX⊤] = Σ and
X ∼ subGd(∥Σ∥op). Assume further that Σ = θvv⊤ + Id satisfies the
spiked covariance model for v such that |v |0 = k ≤ d/2. Then, the
k-sparse largest eigenvector v̂ of the empirical covariance matrix satisfies,

min
ε∈{±1}

∥εv̂ − v∥2

≲
1 + θ

min(θ, 1)

(√
k log(ed/k) + log(1/δ)

n
∨ k log(ed/k) + log(1/δ)

n

)

with probability 1 − δ.
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Multiple regression

Yanbo Tang (Imperial College London) Probability for Statistics March. 2025 22 / 33

iPad Air 5

iPad Air 5

iPad Air 5

iPad Air 5

iPad Air 5

iPad Air 5



Introduction
A simple question to ask is can we extend the classical regression set up to
matrices? Specifically, is it useful to consider a model such that:

Y = XΘ⋆ + E ,

where Y ∈ Rn×T , X ∈ Rn×d and Θ ∈ Rd×T is the unkown matrix of
coefficents for some noise matrix E ∼ subGn×T (σ).

Definition
We call a n×m matrix A subGn×m(σ) if for every x ∈ Sm−1 and y ∈ Sn−1

if:
y⊤Ax ∼ subG (σ2).
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Direct observation model
We are going to make our life simple (at first) and assume that we have an
orthogonal design (ORT condition) for our design matrix, i.e., X⊤X = nId .
Under the ORT assumption,

1
n
X⊤Y = Θ∗ +

1
n
X⊤E .

Which can be written as an equation in Rd×T called the sub-Gaussian
matrix model (sGMM):

y = Θ∗ + F ,

where y = 1
nX

⊤Y and F = 1
nX

⊤E ∼ subGd×T (σ
2/n).
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If Θ⋆ is sparse then it is possible to estimate it from a single observation.
Consider the SVD of Θ∗:

Θ∗ =
∑
j

λjujv
⊤
j .

and define ∥Θ∗∥0 := |λ|0. Therefore, if we knew uj and vj , we could simply
estimate the λjs thresholding. It turns out that estimating the eigenvectors
by themselves is sufficient. Consider the SVD of the observed matrix y :

y =
∑
j

λ̂j ûj v̂
⊤
j .
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Singular value tresholding
Definition The singular value thresholding estimator with threshold
2τ ≥ 0 is defined by

Θ̂SVT =
∑
j

λ̂jI(|λ̂j | > τn)ûj v̂
⊤
j .

Lemma
Let A be a d × T random matrix such that A ∼ subGd×T (σ

2). Then

∥A∥op ≤ 4σ
√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ)

with probability 1 − δ.
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Singular value tresholding
Definition The singular value thresholding estimator with threshold
2τ ≥ 0 is defined by

Θ̂SVT =
∑
j

λ̂jI(|λ̂j | > τn)ûj v̂
⊤
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Theorem
Consider the multivariate linear regression model under the assumption
ORT or, equivalently, the sub-Gaussian matrix model. Then, the singular
value thresholding estimator Θ̂SVT with threshold

τn = 8σ

√
log(12)(d ∨ T )

n
+ 4σ

√
2 log(1/δ)

n
,

satisfies

1
n
∥X̄ Θ̂SVT − X̄Θ∗∥2

F = ∥Θ̂SVT −Θ∗∥2
F ≤ 36 rank(Θ∗)τ2

n

≲
σ2 rank(Θ∗)

n
(d ∨ T + log(1/δ)) .

with probability 1 − δ.
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Proof
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Without ORT
We can then consider penalizing the rank of the matrix instead of direct
truncation in cases when we don’t have the ORT assumption. Let Θ̂RK be
any solution to the following minimization problem:

min
Θ∈Rd×T

{
1
n
∥Y − XΘ∥2

F + τ2
n rank(Θ)

}
.
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Guarantees

Theorem
Consider the multivariate linear regression model (5.1). Then, the
estimator by rank penalization Θ̂RK with regularization parameter τ2

n ,
where τn is defined in as in the previous theorem, satisfies

1
n
∥X Θ̂RK − XΘ∗∥2

F ≤ 2 rank(Θ∗)τ2 ≲
σ2 rank(Θ∗)

n

(
d
√
T + log(1/δ)

)
,

with probability 1 − δ.
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Proof
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Why can we solve this problem efficiently
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Concluding remarks
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