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Summary. We examine a higher order approximation to the significance function with increas-
ing numbers of nuisance parameters, based on the normal approximation to an adjusted log-
likelihood root.We show that the rate of the correction for nuisance parameters is larger than the
correction for non-normality, when the parameter dimension p is O.nα/ for α< 1

2 . We specialize
the results to linear exponential families and location–scale families and illustrate these with
simulations.
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1. Introduction

There is a growing literature on the asymptotic theory for likelihood-based inference in the high
dimensional setting with the number of parameters, p, scaling with the number of observations,
n, where the classical asymptotic theory fails. Sur et al. (2019) derived the limiting distribution
of the log-likelihood ratio statistic in logistic regression, and Sur and Candès (2019) showed
that the limiting distribution of the maximum likelihood estimator of the regression parameter
is normal, but with expected value and asymptotic variance different from the fixed p setting.
Numerical work in Sur et al. (2019) and Sur and Candès (2019) compares the new theory with the
usual first-order approximations; for example Sur et al. (2019) showed that their newly derived
approximation to the distribution of the log-likelihood ratio statistic is more accurate than the
classical χ2-approximation.

As emphasized in Cox (1988) an important objective of asymptotic theory is to provide
approximations to distributions of inferential summaries for applications. Results motivated by
an asymptotic theory with n → ∞ are used to provide approximations for fixed values of n.
The adequacy of the approximations is usually studied in simulations, as precise bounds are
rarely available. There is a long history of developing improved approximations using asymptotic
expansions, rather than simply relying on the limiting distribution. Bartlett (1937) showed that
the χ2-approximation to the distribution of the log-likelihoood ratio statistic for testing the
equality of several normal variances could be much improved by a simple rescaling by the
leading term in the expansion of its expected value. Use of this technique in general models,
developed in Lawley (1956) following Bartlett (1953), is now usually called Bartlett correction.
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When the parameter of interest is a scalar, a very accurate approximation to the significance
function for that parameter is the normal approximation to the distribution of an adjusted
version of the signed square root of the log-likelihood ratio statistic: the modified likelihood
root, rÅ (Barndorff-Nielsen and Cox (1994), chapter 3). Although this approximation is asymp-
totically equivalent to Bartlett correction of the log-likelihood ratio statistic, it preserves the
direction of the departure and has been observed in simulations to give more accurate approxi-
mations. It has also been observed in simulations that this approximation adjusts quite effectively
for even large numbers of nuisance parameters. This suggests that for any fixed values of p and
n it would be of interest to compare the approximations developed in the increasing p setting
with higher order approximations for p fixed.

As a step in that direction, we consider the asymptotic behaviour of rÅ with p increasing with n,
under the constraint that p=O.nα/,α< 1

2 . This constraint on p was assumed in Fan et al. (2019)
for generalized linear models. Sur et al. (2019) and Sur and Candès (2019) studied likelihood in-
ference under the weaker condition, p=n→κ for some bounded constant; they referred to this as
the moderate dimension setting. Of course in any given .n, p/ setting, we would not usually know
which of these regimes applies. One motivation for the current work is to try to assess the effect
of the number of nuisance parameters on higher order approximations, to gain some insight
into when the newly developed asymptotic theory is necessary for accurate approximation, and
when inference based on the normal approximation to the distribution of rÅ would be adequate.

Fan et al. (2019) showed for logistic regression, under some technical assumptions, that it is
possible for the standard first-order techniques to perform adequately for p=o.n1=2/, but not for
faster scaling of p. Sartori (2003) studied likelihood-based inference in Neyman–Scott models,
in which observations are collected in strata, with a common parameter of interest across strata,
and separate nuisance parameters in each stratum. He showed that inference based on profile
likelihood was valid for p=o.n1=2/, whereas that based on modified profile likelihood was valid
for relatively larger p = o.n2=3/. Portnoy (1988) developed asymptotic theory for increasing p
in linear exponential families. Shun and McCullagh (1995) developed Laplace approximations
in the high dimensional setting by using formal expansions and showed that for a regression
model in the exponential family p must scale at a rate of n1=3 for the approximation error to be
o.1/, under some assumptions on the cumulants of the observations.

We examine the behaviour of the normal approximation to the distribution of rÅ by con-
sidering separately two components of the modification: the nuisance parameter adjustment
rnp, and the information adjustment rinf , as in Pierce and Peters (1992). We show that under
smoothness assumptions on the model, for p=O.nα/ for α< 1

2 , that rinf =Op.p3=2=n1=2/ and
rnp = Op.p=n1=2/. Thus rÅ behaves as in the classical asymptotic regime for p = o.n1=3/. As
noted by a reviewer, this rate is suggested by the fixed p expansions of the maximum likelihood
estimator in Barndorff-Nielsen and Cox (1994), section 5.3. The difference in the scaling rates of
rinf and rnp explains long-standing empirical evidence that the nuisance parameter adjustment
plays a larger role than the information adjustment. As a by-product of some of the interme-
diate expansions that are used in the proof of the main results, we quantify the deviation of a
general model from a linear exponential model. This is useful as the expression for rÅ in the
linear exponential family has a particularly simple form.

Specializing the results to linear exponential models or location–scale models we show that
rinf = Op.n−1=2/ and rnp = Op.pn−1=2/, which implies that, for p = O.n1=2/, the nuisance ad-
justment is asymptotically non-negligible. Simulations suggest that the normal approximation
to the distribution of the likelihood root r breaks down at p = O.n1=2/, whereas the normal
approximation to the distribution of rÅ breaks down at p=O.n2=3/. We also briefly discuss the
Bayesian version of rÅ that is obtained via the Laplace expansion.
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We establish a general upper bound on the rate of growth of rnp and rinf but do not establish
any lower bounds, so our results may be pessimistic for some specific models, as is suggested
in Section 6. An ideal analysis would give the exact divergence point between the first-order
and the higher order approximations, by establishing sharp rates of growth of rinf and rnp in p

and n, e.g. by establishing matching upper and lower bounds, but this seems quite difficult. The
numerical work in Section 6 suggests that these bounds would depend on both the model and
the parameter values.

We would also like to be able to confirm that the normal approximation to the distribution of
rÅ is more accurate than the normal approximation to the distribution of r, even as p increases
with n. This would require extension of the pÅ-approximation to the high dimensional setting.
A brief discussion of this point is given in Section 7.

In what follows we use the following notation. For a vector u, we let ‖u‖2 denote the Euclidean
norm of u. With A an m × n matrix with .i, j/ entry aij, the ordered singular values of A are
η1.A/�η2.A/� : : :�ηmin.n,m/.A/. The operator norm is

‖A‖op =η1.A/,

and the Frobenius norm is

‖A‖F = tr.ATA/1=2 = .
∑
i,j

a2
ij/1=2:

In general

‖A‖op �‖A‖F, .1/

and the Frobenius norm and the operator norm are equal if A is a vector. For two matrices A

and B of compatible dimension

|tr.ATB/|�{tr.ATA/tr.BTB/}1=2 =‖A‖F‖B‖F:

For p×p matrices A and B, von Neumann’s trace inequality is

|tr.AB/|�
p∑

j=1
ηj.A/ηj.B/:

We sometimes make assumptions about the largest singular value of a matrix A, but otherwise
we use inequality (1) to provide an upper bound on the largest singular value.

The programs that were used to carry out the simulations can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.

2. Higher order approximations: definitions and background

We assume a parametric model for independent observations y= .y1, : : : , yn/T, where the distri-
bution of yi has density f.·; θ/ depending on a set of unknown parameters θ of dimension
p, and possibly on a vector of covariates xi. We consider inference for a one-dimensional
parameter of interest,ψ, and write θ= .ψ,λ/, whereλ is a .p−1/-dimensional vector of nuisance
parameters.

The observed Fisher information function is j.θ/ = −@2l.θ/=@θ@θT, and subscripts on j.θ/
denote subblocks of this matrix. Other derivatives of the log-likelihood function are denoted by
subscripts on l.θ/; for example lψλλ.θ/ is the matrix with entries {lψλλ.θ/}rs =@3l.θ/=@ψ@λr@λs.

The profile log-likelihood function is
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lp.ψ/= sup
λ

l.ψ,λ/= l.ψ, λ̂ψ/,

where λ̂ψ is the constrained maximum likelihood estimator, and the profile information function
is jp.ψ/=−l′′p.ψ/. When p is fixed, the profile log-likelihood ratio statistic

w.ψ0/=2{lp.ψ̂/− lp.ψ0/}
converges in distribution under the model f.y; θ0/ to a χ2

1 random variable, under regularity
conditions on the model (Barndorff-Nielsen and Cox (1994), chapter 2). The directed root

r.ψ0/= sgn.ψ̂−ψ0/[2{lp.ψ̂/− lp.ψ0/}]1=2

converges in distribution under the same conditions to an N.0, 1/ random variable. The standard
normal approximation to the distribution of r.ψ0/ has relative error O.n−1=2/. Using higher
order asymptotic expansions it can be shown that a modified version of r is more accurately
approximated by the standard normal distribution. This modified directed root is

rÅ.ψ0/= r.ψ0/+ r−1.ψ0/ log{u.ψ0/=r.ψ0/}, .2/

where u.ψ0/ is to be defined later in equation (4). The first term in equation (2) is Op.1/ and
the second term is Op.n−1=2/, and the standard normal approximation to the distribution of
rÅ.ψ0/ has relative error O.n−3=2/ in continuous models (Barndorff-Nielsen and Cox (1994),
chapter 6).

There is a discontinuity in approximation (2) at ψ̂=ψ0, where both r and u approach 0. In
practice this means that the approximation is numerically unstable in a region near the 50% point
of the distribution, although the p-value in this region is not usually of interest. In Brazzale et al.
(2007) this region was interpolated by using a smoothing spline. In the simulations in Section
6 we omit from the summaries values of rÅ when |r|< 0:025. We also recommend plotting the
profile log-likelihood as a function of ψ to check that it is concave and unimodal in a region
around ψ̂; otherwise reliance on the asymptotic theory will be suspect.

To define the adjustment term u in equation (2), additional notation is required. We fol-
low Barndorff-Nielsen and Cox (1994), chapter 5, and assume that the log-likelihood function
l.θ; y/= l.θ; θ̂, a/ depends on the data through the maximum likelihood estimator θ̂ and a com-
plementary statistic a which is either exactly or approximately ancillary. Derivatives with respect
to θ̂ are called sample space derivatives and are denoted by θ̂ after a semicolon in the subscript
of l: for example,

l;θ̂.θ/= @

@θ̂
l.θ; θ̂, a/:

Derivatives of l with respect to both θ and θ̂ are required in the expansions below; these are
referred to as mixed derivatives. Derivatives with respect to θ are denoted by placing θ before
the semicolon in the subscript: for example,

lθ;θ̂.θ/= @2

@θ@θ̂
l.θ; θ̂, a/:

Assuming that θ̂ is the solution of lθ.θ̂; θ̂, a/=0, differentiation with respect to θ̂ establishes the
observed balance relation (Barndorff-Nielsen and Cox (1994), section 5.2)

lθ;θ̂.θ̂/= j.θ̂/: .3/
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The correction term

u.ψ0/=Cũ .4/

is the product of a score-type statistic based on the profile log-likelihood function and an ad-
justment for nuisance parameters. The score-type statistic is

ũ= ũ.ψ0/= j−1=2
p .ψ̂/l̄p=ψ̂.ψ0/, .5/

where l̄p.ψ0/= lp.ψ̂/− lp.ψ0/ and

l̄p=ψ̂ ={l;ψ̂.θ̂/− l;ψ̂.θ̂ψ0/}− lλ;ψ̂.θ̂ψ0/lλ;λ̂.θ̂ψ0/−1{l;λ̂.θ̂/− l;λ̂.θ̂ψ0/};

following Barndorff-Nielsen and Cox (1994), section 6.6, we write l̄p=ψ̂ to denote the sample
space derivative of l̄p with respect to ψ̂ when it is considered as a function of ψ, ψ̂, λ̂ψ and an
approximate or exact ancillary statistic a. The adjustment for nuisance parameters is

C =C.ψ0/=|lλ;λ̂.θ̂ψ0/|={|jλλ.θ̂ψ0/||jλλ.θ̂/|}1=2: .6/

Both C and ũ are invariant under so-called interest respecting reparameterizations from .ψ,λ/

to .ψ, η/ where η may depend on both ψ and λ.
The modified likelihood root (2) can be decomposed accordingly, as

rÅ = r + rnp + rinf ,

where

rnp = r−1 log.C/,

rinf = r−1 log.ũ=r/:
.7/

This was suggested in Pierce and Peters (1992) in the context of linear exponential families
and generalized in Barndorff-Nielsen and Cox (1994), section 6.6. Each term in expression (7)
depends on the parameter of interest,ψ, and the data .θ̂, a/, through the log-likelihood function.

The normal approximation to the distribution of rÅ as a function of θ̂, given a, is derived by
integrating an approximation to the density of the maximum likelihood estimator (Barndorff-
Nielsen, 1983). A change of variable in this integration implicitly assumes that r is a one-to-one
function of ψ̂ for fixed ψ, λ̂ψ and a in a ball of fixed radius around ψ0. In the case of the
linear exponential family this is easily verified, and the approximation can be obtained directly
by a ratio of saddlepoint approximations (Davison, 1988). More detailed discussion of the
rÅ-approximation and its various formulations is given in Reid (2003).

The arguments in the next section use expansions r, rnp and rinf viewed as functions of the
parameter of interestψ. We use the mean value theorem to control the approximation error when
p=pn; each remainder term is evaluated at an intermediate value ψ̃ where |ψ0 − ψ̃|< |ψ0 − ψ̂|.
A similar approach is outlined in Barndorff-Nielsen and Cox (1994), section 3.3. In expansions
of functions of θ, we restrict attention to a neighbourhood of θ0 as described in Section 3.

We write ζk.ψ/=dklp.ψ/=dψk and define the quasi-cumulants

κk.ψ/= ζk.ψ/

{−ζ2.ψ̂/}k=2
:

We also define

γ1.ψ/= d
dψ

log{|jλλ.ψ, λ̂ψ/|}= tr
{

j−1
λλ .ψ, λ̂ψ/

d
dψ

jλλ.ψ, λ̂ψ/

}
: .8/
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3. Analysis of r* when p is increasing with n

Let Nθ0,δ ={θ :‖θ−θ0‖2 < δ} for δ> 0 denote a ball of radius δ centred on θ0. As noted above
we require p=O.nα/ for some 0�α< 1

2 .
The assumptions on the model are as follows.

Assumption 1. ‖θ̂−θ0‖2 =op.1/ and supψ∈An
‖θ̂ψ −θ0‖2 =op.1/, where An ={ψ : |ψ−ψ0|�

|ψ̂−ψ0|}.

Assumption 2. jψλr .θ/=Op.n1=2/ uniformly in r, for θ∈Nθ0,δ.

Assumption 3. The eigenvalues of j.θ/=n and {j.θ/=n}−1 are bounded in probability, for
θ∈Nθ0,δ.

Assumption 4. The log-likelihood derivatives lθrθsθt .θ/, lθrθsθtθo.θ/ and lθrθs;θ̂t
.θ/ are continu-

ous and uniformly Op.n/ in r, s, t and o, for θ∈Nθ0,δ.

Assumption 5. The log-likelihood root r →D Z, for some random variable Z, whose distri-
bution has no point mass at 0. The Wald statistic t = j

1=2
p .ψ̂/.ψ̂−ψ0/→D Z̃ for some random

variable Z̃.

Assumption 1, norm consistency, is quite strong, as noted by a reviewer, although even in
the classical setting consistency is often assumed rather than proved. Assumptions 2–4 control
the behaviour of the log-likelihood derivatives and mixed derivatives when these are evaluated
at θ̂ψ̃ or θ̂. Assumption 2 can be satisfied by assuming that the parameter of interest is globally
orthogonal or locally orthogonal in Nθ0,δ (Cox and Reid, 1987), and requiring the behaviour
to be uniform for each component of λ. Assumption 3 ensures that the asymptotic covariance
matrix is well behaved, and assumption 4 requires that the likelihood derivatives behave as
in the fixed p setting. Assumption 5 does not require the limiting distribution of r to be the
standard normal distribution but the requirement of no point mass at 0 is necessary as we need
to divide some expressions by r. Finally as rnp and rinf are invariant under interest respecting
reparameterizations, the assumptions can be satisfied under any parameterization of the model.

Assumption 3 is similar to condition 2 of Fan et al. (2019) that the maximum and minimum
eigenvalues of the rescaled observed information matrix are bounded away from 0 and ∞. Simi-
larly conditions A1 and A3 in Lei et al. (2016) restrict the growth of the maximum eigenvalue of
the Hessian of the objective function, in their analysis of M-estimates for high dimensional lin-
ear regression. Shun and McCullagh (1995), section 6, made assumptions similar to assumption
4 in the context of Laplace approximations in generalized linear models.

The two results below characterize the asymptotic behaviour of rnp and rinf respectively. The
proof of theorem 1 is sketched here, with technical details given in the on-line supplementary
materials. The proof of theorem 2 is given in the supplementary materials.

Theorem 1. Under assumptions 1–5, rnp =Op{max.p3=2=n1=2, p3=n/}.

Proof. From expressions (6) and (7),

rnp = 1
r

log
[ |lλ;λ̂.θ̂ψ0/|
{|jλλ.θ̂ψ0/||jλλ.θ̂/|}1=2

]
:

We have

|lλ;λ̂.θ̂ψ0/|=
∣∣∣∣lλ;λ̂.θ̂/− .ψ̂−ψ0/

d
dψ

lλ;λ̂.θ̂ψ/|θ̂ψ̃
∣∣∣∣,
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=|lλ;λ̂.θ̂/+R1|,
=|lλ;λ̂.θ̂/||I + l−1

λ;λ̂
.θ̂/R1|,

=|jλλ.θ̂/||I + j−1
λλ .θ̂/R1|,

where the final equality uses equation (3). Then

rnp = 1
r

log
{ |jλλ.θ̂/||I + j−1

λλ .θ̂/R1|
|jλλ.θ̂ψ0/|1=2|jλλ.θ̂/|1=2

}
= 1

r
log

{ |jλλ.θ̂/|1=2

|jλλ.θ̂ψ0/|1=2

}
+ 1

r
log {|I + j−1

λλ .θ̂/R1|}, .9/

=:
1
r

log.ρ/+ 1
r

log{|I + j−1
λλ .θ̂/R1|}: .10/

In lemmas 4 and 6 in the on-line supplementary materials we show that

r−1 log{|I + j−1
λλ .θ̂/R1|}=Op

{
max

(
p3=2

n1=2 ,
p3

n

)}
:

Taylor series expansion of r−1 log.ρ/ gives

1
r

log.ρ/= 1
2r

.ψ0 − ψ̂/γ1.ψ̃/= t

2r

γ1.ψ̃/

j
1=2
p .ψ̂/

,

where γ1.ψ̃/ is defined in equation (8). To bound γ1.ψ̃/, we have

|γ1.ψ̃/|=
∣∣∣∣tr

{
j−1
λλ .θ̂ψ̃/

d
dψ

jλλ.θ̂ψ/|θ̂ψ̃
}∣∣∣∣�

(
tr{j−1

λλ .θ̂ψ̃/2}tr
[{

d
dψ

jλλ.θ̂ψ/|θ̂ψ̃
}2])1=2

,

�‖j−1
λλ .θ̂ψ̃/‖F

∥∥∥ d
dψ

jλλ.θ̂ψ/|θ̂ψ̃
∥∥∥

F
=Op.p3=2/,

since

‖j−1
λλ .θ̂ψ̃/‖F =Op.p1=2=n/,

and ∥∥∥ d
dψ

jλλ.θ̂ψ/|θ̂ψ̃
∥∥∥

F
=Op.pn/,

by proposition 1 in the on-line supplementary materials, and j−1
p .ψ̂/=Op.n−1/ by assumptions

1 and 3. In lemma 3 of the on-line supplementary materials we show that t=r =1+Op.n−1=2/,
giving

rnp =Op

{
max

(
p3=2

n1=2 ,
p3

n

)}
:

Remark 1. Assumption 1 may limit the possible scaling of p with n in practice, and as in the
p-fixed case its verification is model dependent. Portnoy (1988) verified norm consistency for the
canonical parameter in an exponential family model, and Portnoy (1984) proved the result for
M-estimators in linear regression, for p=O.nα/ for α< 1. Using results from Fan et al. (2019),
it can be shown that norm consistency holds for generalized linear models for p=o.n1=2/.

Remark 2. The quantity γ1.ψ0/ is the leading term of the bias of the profile score in linear
exponential models in the p-fixed asymptotic regime (McCullagh and Tibshirani (1990), section
3). We show that γ1.ψ0/=O.p/ for the linear exponential family in the proof of proposition 1.
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Thus for linear exponential models it is possible for the bias of the profile score to be unbounded
in the high dimensional regime, leading to an asymptotically biased estimate of ψ0. Kosmidis
et al. (2019) developed procedures to debias the maximum likelihood estimator.

Remark 3. The quantity log.ρ/ also appears in the modified profile likelihood function
(Barndorff-Nielsen, 1983). The modification to the profile log-likelihood function in the p-
fixed case is O.1/, but when p increases with n the modification can be quite large, as we have
log.ρ/ = Op.p3=2=n1=2/. This may explain why inference based on quantities that are derived
from the modified profile likelihood function is more accurate in simulations than that based on
quantities that are derived from the profile likelihood function, as discussed in Sartori (2003).

Theorem 2. Under assumptions 1–5, rinf =Op.p=n1=2/.

The proof in the on-line supplementary materials uses lemmas 3 and 7.

Remark 4. The scaling rate of rinf is slower than rnp by a factor of p1=2, showing that the
information correction has less effect on the approximation as it is asymptotically negligible for
p=o.n1=2/, whereas rnp is only negligible for p=o.n1=3/. In the specific models that we examine
in Section 5 we have the stronger result that rinf =Op.n−1=2/ so the rate does not depend on the
scaling of p with n.

4. Deviation from exponentiality when p is fixed

The form of u simplifies in the linear exponential family and we have

rnp = 1
r

log.ρ/,

rinf = 1
r

log
(

t

r

)
,

where t is the Wald statistic for testing ψ=ψ0 and ρ is an information determinant defined in
expression (10):

t = .ψ̂−ψ0/j1=2
p .ψ̂/, .11/

ρ2 =|jλλ.ψ̂, λ̂/|=|jλλ.ψ0, λ̂ψ0/|: .12/

The expressions for rnp and rinf in linear exponential families are easier to work with from a
practical standpoint, as most statistical software provides the information matrix, Wald statistic
and log-likelihood function. In general families the mixed derivatives need to be obtained for
each model of interest, and this can be difficult.

In the proof of theorem 1 the intermediate result (10) shows that

1
r

log {|I + j−1
λλ .θ̂/R1|}

measures to Op.n−3=2/ the deviation of rnp in a general model from that in an exponential family.
As rnp has the usual order of Op.n−1=2/, a necessary and sufficient condition for the models to
be asymptotically equivalent is r−1 log{|I + j−1

λλ .θ̂/R1|}=op.n−1=2/. This leads to the following
corollary of theorem 1.

Corollary 1. When p is fixed, under assumptions 1 and 3–5 and the further assumption
‖dlλ;λ̂.θ̂ψ/=dψ|θ‖2 =op.n/, for θ∈Nθ0,δ,
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rnp − 1
r

log.ρ/= 1
r

log{|I + j−1
λλ .θ̂/R1|}=op.n−1=2/:

Corollary 1 implies that, if we know that the size of the third-order mixed derivative with
respect to the parameter of interest is small in terms of singular value, we can use the formula
for rnp that is associated with the linear exponential family when calculating rÅ, as the difference
between the two expressions is negligible. We also note that assumption 2 is automatically
satisfied when p is fixed, as we may use a parameterization where the parameter of interest is
orthogonal to the nuisance parameter at θ0, and so it is not needed for this result.

Remark 5. Cox and Reid (1992) showed that the difference between the profile log-likelihood
function and the adjusted version lp.ψ/ − 1

2 log |jλλ.θ̂ψ/| is asymptotically negligible if
E{lψλλ.θ0/}=0. The condition in corollary 1 on the mixed third derivative is similar. This shows
as well that the condition in Cox and Reid (1992) can be weakened by using von Neumann’s
inequality:

|tr{j−1
λλ .θ0/lψλλ.θ0/}|�

p∑
j=1

ηj{j−1
λλ .θ0/}ηj{lψλλ.θ0/}�η1{lψλλ.θ0/}tr{j−1

λλ .θ0/}:

Thus a condition on the size of the maximum singular value of lψλλ.θ0/ could be used in place
of the condition in Cox and Reid (1992).

For rinf , we have the following corollary to theorem 2.

Corollary 2. Under assumptions 1 and 3–5, and the further assumption that lψψ;ψ̂.θ/=op.n/

for θ∈Nθ0,δ,

rinf − 1
r

log
(

t

r

)
=op.n−1=2/:

Remark 6. When p is fixed, a sufficient condition for both rinf and rnp to be asymptotically
equivalent to their expressions in the linear exponential family is ‖dlθ;θ̂.θ̂ψ/=dψ|θ‖op = op.n/,
for θ∈Nθ0,δ.

5. Examples

5.1. Linear exponential family
Let X be an n×p matrix of covariates with .i, j/ entry xij and ith row xT

i . We assume that the
density of yi is that of a full exponential family model with canonical parameter θ for i=1, : : : , n.
The log-likelihood function for an independent sample y1, : : : , yn is

l.ψ,λ; y/=ψ
n∑

i=1
yixi1 +

p∑
j=2

λj

n∑
i=1

yixij −
n∑

i=1
K.xT

i θ/: .13/

Without loss of generality we assume that the parameter of interest ψ=θ1.
The parameters that are orthogonal to ψ are τj = E.Σn

i=1xijyi=n/ for j = 2, : : : , p. The con-
strained maximum likelihood estimate of τ does not depend on ψ, as

⎛
⎜⎜⎝

Σyixi1
Σyixi2

:::

Σyixip

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

ΣKψ.xT
i θ̂/

ΣKλ1.xT
i θ̂/

:::

ΣKλp−1.xT
i θ̂/

⎞
⎟⎟⎟⎠,
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and the same set of equations, without the first, gives the solution of the constrained maximum
likelihood estimator. In the .ψ, τ / parameterization the observed Fisher information function
evaluated at the constrained maximum likelihood estimator is

j.ψ, τ̂ /=
(

|̃p.ψ/ 0
0 n2|̃λλ.ψ, λ̂ψ/−1

)
, .14/

where |̃ is the observed information function in the .ψ,λ/ parameterization and |̃p = jψψ −
jψλj−1

λλ jλψ is the observed profile information function in the .ψ,λ/ parameterization. We
also note that the expressions for rnp and rinf no longer involve any sample space derivatives
(Barndorff-Nielsen and Cox (1994), example 6.19).

Because of the simpler form of rnp and rinf we can reformulate some of the assumptions.
Assumption 2 is no longer necessary as τ is globally orthogonal to ψ. Assumptions 3 and 4 can
be replaced by the following assumptions.

Assumption 6. The eigenvalues of the Gram matrix satisfy 0<a1n<ηi.X
TX/<a2n<∞, and

Σn
i=1xijxik =O.n/ for each j and k in .1, : : : , p/.

Assumption 7. maxi=1,:::,n K′′.xT
i θ/=O.1/, maxi=1,:::,n

{
K′′.xT

i θ/
}−1 =O.1/ and ΣiK

′′′.xT
i θ/

x3
i1 =O.n/ for θ∈Nθ0,δ.

Assumption 8. The third log-likelihood derivative lψψψ.θ/=Op.n/, for θ∈Nθ0,δ.

Assumptions 6 and 7 imply assumption 3 and assumption 8 is a relaxation of assumption
4. We make the following additional assumption on the third derivative of the log-likelihood,
which states that the observed information of the nuisance parameter must not be too sensitive
to changes in the parameter of interest ψ under the orthogonal parameterization.

Assumption 9. The derivative of the observed Fisher information matrix under the .ψ, τ /

parameterization with respect to ψ satisfies ‖jψττ .θ/‖op =Op.n/, for θ∈Nθ0,δ for some δ> 0.

Proposition 1. Under assumptions 1 and 5–9 in the linear exponential model (13)

rnp =Op.pn−1=2/,

rinf =Op.n−1=2/:

The proof is provided in the on-line supplementary materials. Proposition 1 shows that rinf
has the same behaviour as in the p-fixed regime and is therefore asymptotically negligible,
whereas rnp grows with p at a slower rate than in the general case. For p=O.n1=2/ the limiting
distribution of r can differ from that of rÅ, as demonstrated numerically in Section 5.

Remark 7. The score statistic l′p.ψ0/j
−1=2
p .ψ0/ can be decomposed as

l′p.ψ0/−E{l′p.ψ0/}
j

1=2
p .ψ0/

+ E{l′p.ψ0/}
j

1=2
p .ψ0/

,

and for p = O.n1=2/ the second term is Op.1/ since as discussed in remark 2 the bias of the
profile score is O.p/, so, even if the first term converges to a standard normal distribution, the
second term can produce a non-vanishing bias. This was noted in Sartori (2003) in the context
of stratified models.

Remark 8. Proposition 1 can be applied to stratified models in the linear exponential family
to obtain the same scaling rates of rinf and rnp under similar assumptions. These rates agree
with those obtained by Sartori et al. (1999) and Portnoy (1988).
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5.2. Location–scale models
We consider a linear regression model based on a location–scale family:

yi =xT
i β+σzi, .15/

where the errors zi are assumed independent and identically distributed from a known distribu-
tion with continuous density f.z/.

In model (15)

rinf = 1
r

log
(

s

r

)
,

rnp =−1
r

log.ρ/,

where

s= l′p.ψ0/=j1=2
p .ψ̂/

is the score statistic standardized by the observed profile information at ψ̂. We assume that the
parameter of interest is β1 and write .ψ,λ/= .β1, : : : ,βp−1,σ/. We make additional assumptions
on the third-derivative matrix for the location–scale model.

Assumption 10. maxj=1,:::,p ‖jθjλλ.θ/‖op =Op.n/, for θ∈Nθ0,δ.

This assumption is needed as the derivative of the constrained maximum likelihood estimate
with respect to ψ is not 0 as it is in the case of the linear exponential family. In the on-line
supplementary materials we prove the following proposition.

Proposition 2. Under assumptions 1–5 and 10, in model (15),

rnp =Op.pn−1=2/,

rinf =Op.n−1=2/:

5.3. Bayesian asymptotics
We briefly discuss the Bayesian version of rÅ that is obtained from the Laplace approximation
(Reid (2003), section 2.2). Given a prior density π.ψ,λ/ on the parameter space, the tail area of
the marginal posterior distribution for ψ is approximated by Φ.rÅ

B/, where

rÅ
B = r + 1

r
log

(
qB

r

)
,

and

qB = sρ−1 π.θ̂/

π.θ̂ψ0/
:

We write

rÅ
B = r + rnp + rinf + rprior,

where rnp and rinf are the same as in the location–scale model, and rprior = r−1 log{π.θ̂/=π.θ̂ψ0/}.
Proposition 2 is valid under the same assumptions as given in Section 5.2. However, the con-
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tribution of the prior can be non-negligible, unlike the p-fixed asymptotic regime. For example
in the simplest case where the priors for each parameter are independent,

rprior = 1
r

[
log

{
π1.ψ̂/

π1.ψ0/

}
+

p∑
j=2

log
{

πj.θ̂j/

πj.θ̂j,ψ0/

}]

= 1
r

[
@

@ψ
log{π1.ψ/}|ψ=ψ̃.ψ0 − ψ̂/+

p∑
j=1

@θ̂j,ψ

@ψ

∣∣∣∣
ψ=ψ̃

@

@θj
log{πj.θj/}|θj=θ̂ψ̃,j

.ψ0 − ψ̂/

]
,

where πj denotes the prior for the jth parameter θj, and ψ̃ and θ̂ψ̃,j are as defined in Section
2.1. Using the same set of assumptions as in proposition 2, we have ψ0 − ψ̂= Op.n−1=2/ and
the derivative of the constrained maximum likelihood is Op.n−1=2/ by lemma 1 in the on-line
supplementary materials. Further assuming that the derivatives of the log-prior-density are
uniformly bounded in a Euclidean ball of radius δ around θ0,j, where θ0,j denotes the jth
component of θ0, this results in rprior = Op.n−1=2/ under our assumption of p = o.n1=2/. This
shows that under our assumptions the effect of the prior is the same as in the usual p-fixed
asymptotics.

6. Simulations

6.1. Example: logistic regression
The model is

●
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●
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log(n)

lo
g(
|s
d|
)

(a)   (b)

Fig. 1. Behaviour of rnp for logistic regression, determined from 1000 simulations: (a) comparison of the
logarithm of the empirical mean with the line of slope α� 1

2 (we see that the log-means are close to the line);
(b) simulated standard deviation on the log-scale, and the regression line through the six points (the fitted
slopes for the log-standard-deviation are all around � 1

2 or smaller; from this we can see that rnp is mainly
adjusting for a location bias in r , as the values plotted in (a) are an order of magnitude larger than the values
plotted in (b)) ( , scaling 0.25; , scaling 0.375; , scaling 0.5; , scaling 0.625)
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Fig. 2. Plots illustrating the behaviour of rinf for logistic regression, determined from 1000 simulations: (a)
comparison of the logarithm of the empirical mean with the line of slope � 1

2 (we see that the log-means
are close to the line); (b) simulated standard deviation on the log-scale, and the regression line through the
six points (the slopes of the fitted lines are smaller than � 1

2 ; this suggests that the location adjustment is
dominant as the values plotted in (a) are an order of magnitude larger than the values plotted in (b)) ( ,
scaling 0.25; , scaling 0.375; , scaling 0.5; , scaling 0.625)

yi ∼Bern.pi/, pi = exp.xT
i β/

1+ exp.xT
i β/

:

We generated n vectors xi of length p from a multivariate normal distribution with E.xij/ =
0, var.xij/ = 1 and cov.xij, xik/ = 0:9|j−k|. This covariance structure was chosen so that the
maximal and minimal eigenvalues of the covariance matrix are bounded above and below, and
the correlation between xij and xik is non-zero. The true values of the regression coefficients
were taken as β0 =β1 =1 and βi =1=

√
p for i=2, : : : , p. The parameter of interest is β1.

For each combination of n and p we simulated 1000 values of rinf and rnp, and com-
puted p-values for testing H0 : β1 = 1 based on the normal approximation to the distribu-
tion of r and of rÅ. We used the sets of values n = {103, 103:2, 103:4, 103:6, 103:8, 104} and p =
{n0:25, n0:375, n0:5, n0:625}. If a random variable Zn = Op.nν/, then we expect one or both of
|E.Zn/| and var.Zn/1=2 to be linear in log.n/ with slope ν. As p=O.nα/ for 0 <α< 1

2 , accord-
ing to our theoretical results rnp = Op.p=n1=2/ and rinf = Op.n−1=2/, we would expect either
or both of the log-expectation and the log-standard-deviation of rnp to have slope α− 1

2 , and
either or both of the log-expectation and the log-standard-deviation of rinf to have a slope
of − 1

2 .
In Figs 1 and 2 we plot the 95% bootstrapped confidence intervals of the empirical

mean and standard deviation from 1000 simulations as a function of n, on the log-scale.
As mentioned in Section 2, small values of r may produce numerical instabilities producing
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unreliable estimates for the standard deviation and mean, so we consider only sam-
ples with |r|> 0:025. The slopes of the lines in Figs 1 and 2 are approximately α− 1

2 for the
expectation of rnp and − 1

2 for the expectation of rinf and generally less than − 1
2 for the standard

deviation of rinf and rnp, which is consistent with our theoretical results.
To assess the null distribution, we examine the uniformity of the simulated p-values. We fix

n= 1000 and p=nα with α= .3=12, 4=12, 5=12, 6=12, 7=12, 8=12, 9=12, 10=12/. The simulation
settings are as above. For each value of p we obtained 1000 simulated p-values by using the
standard normal approximation to the distribution of r and of rÅ. We tested the assumption
that these simulation p-values were distributed as U.0, 1/ by using the Kolmogorov–Smirnov
test. This was repeated 100 times, giving 100 p-values from a Kolmogorov–Smirnov test for uni-
formity. Boxplots of the p-values of these uniformity tests for various values of α are displayed
in Fig. 3. In Fig. 3(a) we see that p-values based on the normal approximation to the distribution
of r exhibit non-uniformity around p=n1=2; in Fig. 3(b) p-values based on the normal approx-
imation to the distribution of rÅ are consistent with U.0, 1/ up to a scaling of roughly p=n2=3.

We also examine the breakdown point supposing that we are under the global null whereβi =0
for i=0, : : : , p. It was theoretically determined in Fan et al. (2019) that with Gaussian covariates
the exact breakdown point for the Wald test for a single parameter is p=n2=3. Our simulations
show that the same breakdown point holds for r. For this example we choose a more aggressive
set of scalings α= .3=9, 4=9, 5=9, 6=9, 7=9, 8=9/. In Fig. 4 we see that once again p-values based
on the normal approximation to the distribution of rÅ are approximately uniformly distributed
up to a scaling of roughly p = O.n7=9/, whereas those based on the normal approximation to
the distribution of r break down at roughly p=O.n2=3/.
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(a) (b)

Fig. 5. Plots for Weibull regression illustrating the magnitude of rinf and rnp (we plot the log-
standard-deviation of rnp and rinf, with the line of best fit for both plots): (a) the fitted slopes for rnp
are less than α� 1

2 ( , scaling 0.33; , scaling 0.42; , scaling 0.5; , scaling 0.58); (b) the fitted
slopes for the log-standard-deviation of rinf are much less than � 1

2 ( , scaling 0.33; , scaling 0.42; ,
scaling 0.5; , scaling 0.58)
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6.2. Example: Weibull regression
As an illustration of the location–scale model we simulate observations from a Weibull regres-
sion:

yi =xT
i β+σzi,

where f.z/= exp{z− exp.z/}. We generated 1000 simulations from this model with regression
coefficients β0 = 1, β1 = 0, βi = 1=

√
p for i = 2, : : : , p and σ= 2. We use six possible values of

n = {103, 103:2, 103:4, 103:6, 103:8, 104}, and p = {n4=12, n5=12, n6=12, n7=12}. For each simulation
we obtained the p-value for testing H0 : β1 = 0 based on the normal approximation to the
distribution of r and of rÅ. We note that, although it is possible to orthogonalize βi to β1 for
i={2, : : : , p}, σ is not orthogonal to β1 as the density of the Weibull regression is not symmetric.
Therefore, it is not obvious whether assumption 2 holds; nevertheless our results seem to be
valid for the Weibull regression in the simulated results.

Plots of the simulated standard deviation of rnp and rinf are given in Fig. 5. Again we consider
only samples with |r| > 0:025 to avoid the singularity near ψ̂=ψ0. The empirical means were
essentially 0, so they are not plotted here. We estimated the standard deviation empirically
from the 1000 generated values and plot the 95% bootstrap confidence intervals against their
associated value of log.n/. The slope of the line for the standard deviation for each of the scalings
of p illustrates the order in n of rinf and rnp. Fig. 5 shows that the theoretical prediction for
rinf is correct; however, it appears that the scaling for rnp is slower than expected. On the basis
of results in Section 5.2 we would have expected slopes of α− 1

2 ; however, it appears that the
slopes obtained are smaller. This demonstrates that the scaling rates of rnp are better than our
conservative upper bounds for some location–scale models.

As in Section 5.1, we assessed the uniformity of the p-values based on the normal approx-
imation to the distribution of r and rÅ. We fixed n = 1000 and considered various possible
scalings of p=nα with α={0:25, 0:33, 0:42, 0:50, 0:58, 0:67, 0:75, 0:83}. As above the regression
coefficients were set to β0 =1,β1 =0 and βi =1=

√
p for i=2, : : : , p, and we tested H0 :β1 =0.

The results are displayed in Fig. 6, where it is apparent that the normal approximation to the
distribution of rÅ is much more accurate than the normal approximation to the distribution of
r. We see that p-values based on r exhibit non-uniformity around p=n2=3 whereas those based
on rÅ maintain the uniformity of the distribution of the p-values for all scalings displayed. This
is quite remarkable as, for α= 0:83, p= 464, meaning that the number of covariates is almost
half the number of observations.

We also examined the breakdown point of the p-value distribution under the global null βi =0
for i=0, : : : , p. For this example we chose a different set of possible scalingsα={0:33, 0:44, 0:56,
0:67, 0:78, 0:89}. We used the same procedure to simulate xi as described above. In Fig. 7 we
see again that p-values based on the rÅ-approximation are uniformly distributed under the null
up to a higher scaling; the normal approximation to the distribution of r still breaks down at
p=O.n2=3/, whereas that for rÅ breaks down around p=O.n8=9/.

7. Discussion

Theorems 1 and 2 in Section 3 establish the size of the two correction terms for the likelihood
root, as a function of the dimension p and the sample size n, although the numerical work in
Section 6 shows that in special cases the rate may be better than what is proved. The results also
provide an explanation for the observation that correction for nuisance parameters is the most
important aspect of higher order approximations.
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These results suggest that higher order approximations can be broadly applied in models
where the number of nuisance parameters is comparable with the number of observations and
are not only improvements in small sample settings.

The expansions that were used in the proofs of results in Section 3 rely on an intermediate
value ofψ; an alternative approach would be to continue the Taylor series as a formal asymptotic
expansion. The approach that was used here makes it easier to control the error term. The formal
approach is explored in a companion paper (Tang and Reid, 2020), as it provides some insight
into the structure of the expressions in models with many nuisance parameters.

Research directions that could be explored building on this work include the following sug-
gestions:

(a) verifying that the normal approximation to the distribution of rÅ is more accurate than
the normal approximation to the distribution of r in the high dimensional setting, as is
suggested by the simulations;

(b) analysing inference based on the modified profile likelihood function, as Sartori (2003)
showed that in the stratified model setting this has better asymptotic behaviour as p

increases than inference based on rÅ;
(c) using the techniques that were developed here to study related higher order approxima-

tions, including for example the pÅ-approximation to the density of the maximum likeli-
hood estimator, and saddlepoint approximations to the density of M-estimators. This may
be accomplished by extending the work of Field (1982) to the high dimensional regime,
and the broader generality of M-estimates will be helpful in studying the behaviour of
estimators that are not likelihood based.

(d) A reviewer asked whether the constrained maximum likelihood estimator could be re-
placed by a nuisance parameter estimator that exploits sparsity, as is often used in models
with many parameters. We think that this would raise several technical difficulties, but
analysis of the M-estimator that was described above might be helpful for this.
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