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1 Introduction

Final version should be up by early April. We construct models based on a phenomena of
interest, naturally for more complex phenomena we would expect to use a more complex model.
We also base model complexity on the amount of information that is available to us, as we are
able to collect more information, we are expected to include more information into the statistical
model. A curse and blessing of the 21th century has been the amount of information that we
now have access too, and the tension this creates between available computational resources and
theoretical guarantees for our proposed prediction and inference procedures.

These notes are a convex combination of existing works Wainwright (2019); Vershynin (2018);
Boucheron et al. (2013); Rigollet and Hütter (2023) and are a condensed version of the material
therein; you should think of this as notes on existing notes rather than a new piece of work. This
was created as a reference for a 5 week module for a postgraduate course, so it is more condensed
than a classical treatment of the material and is meant to highlight and contrast different aspects
of high-dimensional statistics. Some exercises are directly taken from the notes cited above as
well.

1.1 Prerequisites

Basic knowledge of undergraduate statistics is assumed, students should be aware of basic con-
cepts of convergence in distribution, convergence in probability and the central limit theorem.
Some knowledge of linear regression is assumed as well, otherwise the material will aim to be
self-contained as much as possible.

2 Concentration

We will think of a concentration inequality for a sequence of random variable Xn as a bound of
the type:

P (|Xn − E[Xn]| > t) ≤ fn(t)

for some function that is increasing in t, this provides us with an idea of the distribution of its
tails. For now, let us imagine that n takes the role of sample size and Xn is an estimator for
a quantity of interest, for example an empirical average, it is also reasonable to then expected
that fn(t) is a decreasing function in n. The key feature of these kinds of bounds is that they
are valid for all n and therefore avoid asymptotic arguments and allows for more precise control
over the behaviour of the tails of these random variables.
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We would also wish for the functions fn(t) to decay as quickly as possible with n and t, we
see in what follows that the best rate that one can usually hope for will be roughly exp(−nt2/2),
but of course in general worse rates are possible.

2.1 Motivation for non-asymptotic results

In our undergraduate studies, we studied various notion of convergence. Amongst them, conver-
gence in probability and convergence in distribution are of primary interest to statisticians. We
review these concepts but also contrasts them with the finite sample centric approach we will
take in this course. Convergence in probability states that:

∀ϵ>0 lim
n→∞

P(|Xn −X| > ϵ) → 0,

assuming that these random variables live on a common probability space. This statement does
give us some notion of concentration, for example if we were to use the weak law of large numbers,
for a sequence of IID random variable with common mean µ and finite first absolute moment we
have:

n∑
i=1

Xi

n

p−→ µ,

this tells us that the empirical mean will be expected to be close to the true mean given enough
samples.

But this alone does not tell us anything about the rate at which this is happening, and
without this, it is difficult to apply a limit theorem to a practical setting. More specifically, we
do not know what “enough samples” means in our context. In fact, one can construct arbitrary
slowly converging sequences of random variable, as this simple example shows.

Example 1. Let U ∼ uniform(0, 1), and Mn ↓ 0 with M0 < 1. Consider the sequence of random

variable random variable Xn = UI[u ∈ (0,Mn)], then Xn
p−→ 0 and for all 0 < ϵ < 1

P[|Xn| > ϵ] ≤Mn.

We can take arbitrary slow sequences Mn, for example nested logarithms Mn = log(log(. . . (n)))
and if we want Mn < 1/2 we would need a n that is a towering exponential function.

We say that Xn
D−→ X if for every continuity point t of the random variable X

lim
n→∞

Fn(t) = F (t),

where Fn(t) are the cumulative functions of Xn. One common way to show convergence in
distribution is with the central limit theorem, which states that for a sequence of IID random
variables with common mean E[X1] = µ, E[(X1 − µ)2] = σ2 <∞:∑

i=1(Xi − µ)

σn1/2
D−→ Z,

for a standard normal random variable Z. Typically we pretend that this result is “exact” and
ignore the fact that it holds only in the limit to construct confidence statements. One exercises
you might have encountered is the following:

Example 2. Consider an IID sequence Xi ∼ Bernouilli(p). Then by the CLT∑n
i=i(Xi − p)√
np(1− p)

D−→ Z,

for a standard normal distribution Z.
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We are guaranteed that in the limit our results are exact, but we don’t know the performance
of these confidence intervals in the finite sample setting. This motivates the use of concentration
inequalities which are able to provide a stronger guarantee in finite samples settings.

Another goal which we will set for ourselves is the to include dimensionality into the rate
of concentration. Classical asymptotic results usually assumes that the ambient dimension of
the random variable is fixed. However, if the dimension of the random variable is allowed to
vary with the sample size, then some well established results may no longer hold. The following
explores such a case with the weak law of large numbers:

Example 3. Consider a p-dimensional multivariate normal distribution Xn,p ∼ N(0, Ip) where Ip
is the p dimension identity matrix. Then if the dimension p is fixed by the weak law of large
numbers: ∑n

i=1Xn,p

n

p−→ 0.

However, if we let p increase with n such that p/n→ c > 0 then∥∥∥∥∑n
i=1Xn,p

n

∥∥∥∥2
2

∼
χ2
p

n
,

whose variance does not tend to 0, therefore this never concentrates around its expectation of 0.

A statement like the weak law of large number is not well defined if we let the dimension
increase, but we understand that the implicit idea of getting closer to the truth with more samples
is no longer valid in this case. Therefore, in letting the dimensionality of the underlying problem
vary, we are able to more clearly identity the effect of dimension. Many other classical tests, such
as the commonly used likelihood ratio tests, fails in high-dimensions even for relatively simple
logistic models, see He et al. (2021).

2.2 Sub-Gaussian Concentration

It begins with the humble Markov’s inequality.

Theorem 1. For a positive random variable X with E[X] <∞:

P (X ≥ t) ≤ E[X]

t
.

The limitation that the random variable has to be non-negative seems restrictive, but this
can be circumvented by transforming the initial random variable. One common transformation
is to use |X − µ|k:

P (|X − µ| ≥ t) = P(|X − µ|k ≥ tk) ≤ E[|X − µ|k]
tk

,

this inequality is useful so long as E|X − µ|k < ∞ otherwise it will be vacuous (although still
technically valid). The case of k = 2 is the well known Chebyschev’s inequality. Indeed it is
possible to refine this result, given that this bound technically holds for any choice of k:

P(|X − µ| ≥ t) ≤ min
k=1,...

E[|X − µ|k]
tk

,

although in practice this requires us to either compute or upper bound the centralized moments
and depending on the value of t being considered, it may be possible for the minima to be realized
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at different values of k. For any monotonically increasing transformation f(x) : R → R+, the
following sequence of inequality holds:

P(X − µ ≥ t) = P(f(X − µ) ≥ f(t)) ≤ E[f(X − µ)]

f(t)
.

A common choice is the function f(x) = exp(λx) gives us the following:

P(X − µ ≥ t) ≤ inf
λ∈[0,b]

E[exp(λ(X − µ)− λt)]

= exp

{
inf

λ∈[0,b]
log(E[exp(λX)])− λt

}
,

where the bound needs to be optimized for each t and b is the largest value for which the expec-
tation E exp(λX) < ∞. An apparent weakness of the approach is that the moment generating
function must be known, which is typically not the case for most complex random variables.
But we will see that an upper bound on the moment generating function suffices to obtain a tail
bound.

Chernoff’s approach if often used because moment generating functions are very well behaved
under convolutions for independent random variables with mean µi as it would only involve the
following:

P

(
n∑

i=1

Xi −
n∑

i=1

µ ≥ t

)
≤ inf

λ∈[0,b]

n∏
i=1

MXi−µi
(λt) exp(−λt)

= exp

{
inf

λ∈[0,b]
log(MXi−µi

(λt)− λt

}
,

where MXi−µi(·) is the moment generating function for the random variable Xi − µi. Using the
moment approach with Markov’s inequality would involve us having to compute the all of the
k-th order cross terms which is tedious. Of course, in the case of IID random variables, both
cases simplify considerably.

Remark 1. As we saw, Chernoff’s inequalities are often better than what one can obtain with
any single application of Markov’s inequality, we do need to essentially assume that all moments
of the random variable exists, whereas with Markov’s inequality we only need this up to some order
k. Most of the presented inequalities are sharp, meaning that there exists a random variable which
realizes the ≤ with equality for certain values of t. Therefore we can only hope to trade in better
rates of concentration through stricter assumptions.

Applying this to the Gaussian distribution with mean µ and σ gives us the following bound
on the tails of the Gaussian:

P[X > µ+ t] ≤ exp

{
inf

λ∈[0,b]
log(E[exp(λX)])− λt

}
= exp

{
inf

λ∈[0,∞)

λ2σ2

2
− λt

}
= exp

(
−t2

2σ2

)
,

where the value of λ which solves infλ∈[0,∞)
λ2σ2

2 − λt can be obtained by differentiating with
respect to λ and solving the equation:

λσ2 − t = 0,

justifiable as the function is strongly convex and infinitely differentiable. By symmetry of the
Gaussian distribution (consider −X), we have the following lower tail bound:

P[X < µ− t] ≤ exp

(
−t2

2σ2

)
.
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we can then combine these two bounds into a two sided inequality by a union bound (let A1 =
{X − µ > t}, A2 = {X − µ < −t}, then P (A1 ∪A2) ≤ P (A1) + P (A2)):

P[|X − µ| > t] ≤ exp

(
−t2

2σ2

)
.

These bounds are not optimal for Gaussian random variables, in fact they are off by at least a
polynomial factor 1

t , see exercise 2 for a sharper bound.
But this result is useful as we can obtain these types bounds so long as the random variable

has “Gaussian like” tails, and this can be quantified through a bound on the moment generating
function of the random variable.

Definition 1. A random variable X is called sub-Gaussian with proxy variance σ2 if there exists
a σ2 > 0:

E[exp(λ(X − µ))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R. A random vector X ∈ Rd is sub-Gaussian with proxy variance σ2 if u⊤X is
sub-Gaussian with proxy variance σ2 for all u ∈ Sd−1.

In this text σ2 will be refereed to as the proxy variance, it is not an unique value but a smaller
value of σ2 will provide a better bound. The requirement that this inequality holds for all real
numbers requires that the moment generating function exists for all λ ∈ R, which is stronger
than the requirement for the generic Chernoff approach. Immediately we have:

Proposition 1. -Gaussian random variable X with proxy variance σ satisfies:

P[X − µ > t] ≤ exp

(
−t2

2σ2

)
,

P[X − µ < −t] ≤ exp

(
−t2

2σ2

)
,

P[|X − µ| > t] ≤ 2 exp

(
−t2

2σ2

)
.

The class of sub-Gaussian random variables is relatvely broad and includes many useful
random variables. Indeed by Hoeffding’s lemma, we immediately have that all bounded random
variables are sub-Gaussian with proxy variance σ2 = (b− a)2/4.

Lemma 1. Hoeffding Lemma: Let X be any random variable such that a < X < b almost
surely. Then for all λ ∈ R:

E[exp(λX)] ≤ exp(λ2(b− a)2/8)

Proof. Without loss of generality assume that E[X] = 0. By convexity of exp(λx):

eλx ≤ b− x

b− a
eλa +

a− x

b− a
eλa.

Therefore,

E
[
eλX

]
≤ b− E[X]

b− a
eλa +

E[X]− a

b− a
eλb =

b

b− a
eλa +

−a
b− a

eλb =: eL(λ(b−a)),
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for all x ∈ [a, b]. where L(h) = ha
b−a + ln

(
1 + a−eha

b−a

)
. The function

L(0) = L′(0) = 0 and L′′(h) = − abeh

(b− aeh)2
.

From the AMGM inequality we thus see that L′′(h) ≤ 1
4 for all h. By a second order Taylor

expansion with the mean value form of the remainder, there is some 0 ≤ θ ≤ 1 such that

L(h) = L(0) + hL′(0) +
1

2
h2L′′(hθ) ≤ 1

8
h2.

Thus, E
[
eλX

]
≤ eλ

2(b−a)2/8.

Sub-Gaussian bounds are preserved under convolution, which are useful for studying the
behavior of averages and sums.

Proposition 2. Exercise 2.13 in Wainwright (2019) Suppose that X1 and X2 are 0 mean
sub-Gaussian random variables with proxy variances of σ2

1 and σ2
2

• If they are independent, then X1 +X2 is sub-Gaussian with proxy variance σ2
1 + σ2

2

• In general, X1 +X2 sub-Gaussian with proxy variance (σ1 + σ2)
2

• For c ∈ R, cX1 is subGaussian with proxy variance c2σ2
1.

This gives us the following concentration inequality for averages of sub-Gaussian random
variables:

Theorem 2. Hoeffding bound for averages: Let Xi for i = 1, . . . , n be a sequence of IID
random variables with proxy variances σ2, then:

P

(∣∣∣∣∣
n∑

i=1

Xi/n− µ

∣∣∣∣∣ ≥ t

)
≤ exp

(
−nt2

2σ2

)
This theorem can be thought of as providing a qualitative bound for the weak law of large

numbers. But the strength of these inequalities can be seen when they are able to account for
the behavior of the dimension of the problem in greater detail. We consider an application of
this bound to the problem of Monte Carlo estimation for volumes.

Suppose we are interested in calculating the unknown volume (Lebesgue measure) of a set F
which is contained within a set F ′ with known finite volume. Then if we can sample Xi’s from
the uniform distribution supported on F ′, it is possible to approximate the volume of F by:

Vol(F ) ≈ Vol(F ′)

n∑
i=1

I[Xi ∈ F ]

n
.

As the random variable Vol(F ′)I[Xi ∈ F ] only takes the value of 0 or Vol(F ′),

Example 4. Let F = {x ∈ Rp : ∥x∥2 ≤ 1} and let F ′ = {x ∈ Rp : ∥x∥∞ ≤ 1}, where F is a
hypersphere of dimension p with radius 1, while F ′ is the hypercube centered at 0 with sides of
length 2. In this case we know that Vol(F ) = πp/2/Γ(p/2 + 1) and Vol(F ′) = 2p, thus
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P

[∣∣∣∣∣Vol(F ′)

n∑
i=1

I[Xi ∈ F ]/n−Vol(F )

∣∣∣∣∣ > δ

]
≤ 2 exp

(
− δ2n

22p−1

)
,

P
[∣∣∣∣Vol(F ′)

∑n
i=1 I[Xi ∈ F ]−Vol(F )

Vol(F )

∣∣∣∣ > δ

]
≤ 2 exp

(
− δ2πpn

22p−1Γ(p/2 + 1)2

)
,

The absolute error is decaying extremely quickly, as the volume of an unit sphere is exponentially
decaying to 0 as its dimension increases, therefore the chance of hitting the sphere by sampling
from the unit cube is also exponentially decaying to 0. Our estimate will be essentially 0, but
this is quite close to the volume of an unit sphere in high dimensions. However, in order for the
relative error to tend to 0 we require that:

n(p) = exp[ω{p log(p)}],

by Stirling’s approximation, to achieve a measure of relative consistency we need a exponentially
increasing number of samples in the dimension of the sphere.

2.3 Maxima of sub-Gaussians

It is of interest to control the maximum or supremum of a collection of random variables, this is
commonly used in empirical process theory or learning theory for example and we will see this
used in Section 3. The fast rate of decay in the tail of sub-Gaussian random variables is also
very useful for controlling the maximum of independent sub-Gaussian random variables.

Proposition 3. Let X1, . . . , Xn be a sequence of sub-Gaussian random variables with common
proxy variance σ2 then

E[max
1≤n

Xi] ≤ σ
√

2 log(n),

P(max
1≤n

Xi > t) ≤ N exp

(
−t2

σ2

)
.

Note that independence is not needed.

Parts of the following proof generalizes to other random variables, for example sub-exponential
random variables which will be introduced in the next section.

Proof. By Jensen’s inequality

exp

(
λE max

i=1,...,N
Zi

)
≤ E exp

(
λ max

i=1,...,N
Zi

)
= E max

i=1,...,n
eλZi ,

using the fact that maxi=1,...,n ai ≤
∑n

i=1 ai for positive ai,

E max
i=1,...,N

eλZi ≤
N∑
i=1

EeλZi ≤ Neλ
2σ2/2.

Taking logarithms on both sides, we have

E max
i=1,...,N

Zi ≤
logN

λ
+
λσ

2
.
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The upper bound is minimized for λ =
√
2 logN/σ2 which yields

E max
i=1,...,N

Zi ≤
√

2σ logN.

For the second statement it follows from an application of the union bound:

P
(

max
1≤i≤n

Xi > t

)
= P

 ⋃
1≤i≤n

{Xi > t}

 ≤
∑

1≤i≤n

P(Xi > t) ≤ ne−
t2

2σ2 .

Two sided bounds can also be obtained by considering −Xi and using the union bound.
The independent case is actually the worst case scenario for the growth of the maximum. For
some intuition behind this, imagine a sequence of perfectly correlated standard Gaussian random
variables with X1 = X2 = · · · = Xn, then the expectation of the maximum will simply be 0.

What if we wanted to control a maximum or supremum over an infinite set? For example,
consider the unit ℓ2 ball in Rd which is defined as the set of vectors with Euclidean norm ∥u∥2
at most 1. Formally,

B2 =

{
x ∈ Rd :

d∑
i=1

x2i ≤ 1

}
,

and we are interested in controlling for:

E
[
sup
θ∈B2

θ⊤X
]
,

where X follows a sub-Gaussian distribution. We will try to write the maximum over B2 as a
maximum over some finite set along with some “approximation error”, to do so, we introduce
the idea of covering numbers and ϵ-nets.

Definition 2. Fix K ⊂ Rd and ε > 0. A set N is called an ε-net of K with respect to a distance
d(·, ·) on Rd, if N ⊂ K and for any z ∈ K, there exists x ∈ N such that d(x, z) ≤ ε.

If N is an ε-net of K with respect to a norm ∥ · ∥, then every point of K is at distance at
most ε from a point in N . If K is a compact set, then it is always possible to find an ϵ covering,
we are however after an efficient covering, so we need to find a good upper bound for the number
of points needed.

Lemma 2. For any ε ∈ (0, 1), the unit Euclidean ball B2 has an ε-net N with respect to the
Euclidean distance of cardinality |N | ≤ (3/ε)d.

Proof. Consider the following iterative construction of the ε-net. Choose x1 = 0. For any i ≥ 2,
take xi to be any x ∈ B2 such that |x − xj |2 > ε for all j < i. If no such x exists, then we are
done. Clearly, this creates an ε-net of the unit ball. We now control its size.

Observe that since |x − y|2 > ε for all x, y ∈ N , the Euclidean balls centered at x ∈ N and
with radius ε/2 are disjoint. Moreover,⋃

z∈N
{z + ε

2
B2} ⊂ (1 +

ε

2
)B2
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where {z + εB2} = {z + εx, x ∈ B2}. Thus, measuring the volumes of these sets, we get

vol
(
(1 +

ε

2
)B2

)
≥ vol

( ⋃
z∈N

{z + ε

2
B2}

)
=
∑
z∈N

vol
(
{z + ε

2
B2}

)
.

This is equivalent to (
1 +

ε

2

)d
≥ |N |

(ε
2

)d
.

Therefore, we get the following bound

|N | ≤
(
1 +

2

ε

)d

≤
(
3

ε

)d

.

Theorem 3. Let X ∈ Rd be a sub-Gaussian random vector with variance proxy σ2. Then

E
[
sup
θ∈B2

θTX
]
= E

[
sup
θ∈B2

|θTX|
]
≤ 4σ

√
d.

Moreover, for any δ > 0, with probability 1− δ, it holds

sup
θ∈B2

θTX = sup
θ∈B2

|θTX| ≤ 4σ
√
d+ 2σ

√
2 log(1/δ).

Proof. Let N be a 1/2-net of B2 with respect to the Euclidean norm which satisfies |N | ≤ 6d

by Lemma 2. Observe that for every θ ∈ B2, there exists z ∈ N and x such that |x|2 ≤ 1/2 and
θ = z + x. Therefore,

max
θ∈B2

θTX ≤ max
z∈N

zTX + max
x∈ 1

2B2

xTX.

But

max
x∈ 1

2B2

xTX =
1

2
max
x∈B2

xTX.

Therefore,
E[max

θ∈B2

θTX] ≤ 2E[max
z∈N

zTX] ≤ 2σ
√

2 log(|N |)d ≤ 4σ
√
d.

The bound with high probability follows as

P
(
max
θ∈B2

θTX > t
)
≤ P

(
2max

z∈N
zTX > t

)
≤ |N |e−

t2

8σ2 ≤ 6de−
t2

8σ2 .

To conclude the proof, we find t such that

e−
t2

8σ2 +d log(6) ≤ δ ⇐⇒ t2 ≥ 8 log(6)σ2d+ 8σ2 log(1/δ).

Therefore, it is sufficient to take

t =

√
8 log(6)σ2

√
d+ 2σ2

√
2 log(1/δ).
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Remark 2. Exercise 2.3 Wainwright (2019) The Chernoff method can be sub-optimal. If
a positive random variable X has a moment generating function whose value is finite for an
interval around 0 then there exists a t such that:

inf
k=0,1,...

E[|X|k]
tk

≤ inf
λ>0

E[exp(λX)]

exp(λt)
,

which in turn implies that:

P(X ≥ t) ≤ inf
k=0,1,...

E[|X|k]
tk

≤ inf
λ>0

E[exp(λX)]

exp(λt)
.

This shows that a well optimized moment bound is never worst than a Chernoff bound.

Remark 3. For the problem of volume estimation, generally pure Monte Carlo approaches does
not perform well in high-dimensions and the example was purely illustrative. The estimation of
the volume of convex high-dimensional figures has a rich history, see [I’ll find it eventually!] for
a summary of some of the results from MCMC type approaches.

Exercise 1. Show that is the moment generating function MX(t) exists for some values of
|t| < δ, then all moments E[Xk] exists. Show that the converse is not true.

Exercise 2. Show that for a standard normal random variable Z(
1

z
− 1

z3

)
≤ P [Z ≥ z] ≤ 1

z
ϕ(z) for z > 0,

where ϕ(z) = exp(−z2/2)/
√
2π, the density of a standard normal distribution.

Exercise 3. Show the difference in the α level quantiles implies by the sub-Gaussian bound and
the Mill’s ratio.

2.4 Sub-Exponential Concentration

The Gaussian tail bounds decay roughly of order exp(−nt2), which is quite rapid, however, these
tails are extremely light, so it is worth thinking about other classes of random variable which
shows slower but still exponential decay.

Definition 3. A random variable with mean X with µ = E[X] is sub-exponential if there are
non-negative parameters (ν, α) such that

E [exp(λ(X − µ))] ≤ exp

(
ν2λ2

2

)
for all |λ| < 1

α
.

A good example of a commonly used distribution which is sub-exponential is the exponential
distribution with rate parameter 1, the centralized random variable X−1 has moment generating
function is MX−1(λ) = exp(−λ)(1 − λ)−1 if λ < 1, note that this random variable is not sub-
Gaussian as the moment generating function does not exist everywhere.

Proposition 4. Suppose that X is a sub-exponential distribution with parameters (ν, α) then:

P[X − µ ≥ t] ≤

{
e−

t2

2ν2 if 0 ≤ t ≤ ν2

α ,

e−
t

2α for t > ν2

α .
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Proof. Without loss of generality assume that µ = 0. We use the Chernoff-type approach as was
done for the Gaussian

P[X ≥ t] ≤ e−λtE[eλX ] ≤ exp

(
−λt+ λ2ν2

2

)
︸ ︷︷ ︸

g(λ,t)

,

which is valid for all λ ∈ [0, α−1].
To complete the proof, it remains to compute, for each fixed t ≥ 0,

g∗(t) := inf
λ∈[0,α−1]

g(λ, t).

Note that the unconstrained minimum of the function g(λ, t) occurs at λ∗ = t/ν2. However, if

0 ≤ t < ν2

α , then this unconstrained optimum corresponds to the constrained minimum as well,
so that

g∗(t) = − t2

2ν2

over this interval.
Otherwise, we may assume that t ≥ ν2

α . In this case, since the function g(·, t) is monotonically
decreasing in the interval [0, λ∗], the constrained minimum is achieved at the boundary point of
α−1, and we have

g∗(t) = g(α−1, t) = − t

α
+

1

2α

ν2

α
≤ − t

2α
,

where we used the fact that ν2

α ≤ t.

Sometimes it is difficult to compute the moment generating function, a commonly used suf-
ficient condition to get sub-exponential bounds is the Bernstein condition:

Definition 4. Bernstein condition. Given a random variable X with mean µ and variance
σ2, we say that Bernstein’s condition with parameter b holds if

E[(X − µ)k] ≤ 1

2
k!σ2bk−2 for all k ∈ N.

Proposition 5. For any random variable satisfying the Bernstein condition with parameter b

E[eλ(X−µ)] ≤ exp

(
λσ2

2− 2|λ|b

)
for all |λ| < 1

ν
,

and, moreover, the concentration inequality

P[|X − µ| ≥ t] ≤ 2 exp

(
−t2

2(σ2 + bt)

)
for all t ≥ 0.

Proposition 6. Preservation of sub-exponential property. For a sequence of independent
random variables Xi for i = 1, . . . , n which are sub-exponential (νi, αi), the sum

n∑
i=1

(Xi − E(Xi)),

is sub-exponential with parameters (ν∗, α∗) where α∗ = maxi=1,...,n αi and ν⋆ =
√∑n

i=1 ν
2
i .
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Similar to the sub-Gaussian case, we can show the following for the concentration of averages
of independent sub-exponential distribution:

Proposition 7. For a sequence of independent random variables Xi for i = 1, . . . , n which are
sub-exponential (νi, αi),

P
[ 1
n

n∑
i=1

(Xk − µk) ≥ t
]
≤

exp
(
−n2t2

2ν∗

)
for 0 ≤ t ≤ ν2

∗
nα∗

,

exp
(
− nt

2α∗

)
for t >

ν2
∗

nα∗
,

Example 5. Concentration of Chi-squared random variables. Consider a chi-squared ran-
dom variable with n degrees of freedom, denoted by Y ∼ χ2

n, by properties of gamma distribution
(of which the chi-squared belongs to) we can write

Y =

n∑
k=1

Z2
k

where Zk ∼ N (0, 1) are i.i.d. variates. The random variable Z2
k is sub-exponential with pa-

rameters (2, 4) (show this!). Consequently, since the random variables {Zk}nk=1 are independent,
the χ2-variate Y is sub-exponential with parameters (ν, α) = (2

√
n, 4), and provides us with the

following tail bound

P

[∣∣∣∣∣ 1n
n∑

k=1

Z2
k − 1

∣∣∣∣∣ ≥ t

]
≤ 2e−nt2/8, for all t ∈ (0, 1).

We will now see an important application of sub-exponential concentration: the Johnson-
Lindenstrauss lemma. Suppose that we have a set of very high-dimensional vectors {u1, . . . , uN}
of dimension d, which we cannot properly store on our computers due to memory constraints. We
would ideally like to compress the data using some function F : Rd → Rm in a way to preserve
some important feature of this set of vectors, in this example suppose that we are interested in
preserving the pairwise Euclidean distance.

More precisely, we want a mapping F such that for some error tolerance δ ∈ (0, 1)

(1− δ) ≤ ∥F (ui)− F (uj)∥2
∥ui − uj∥2

≤ (1 + δ),

for all i ̸= j. It turns out that there is a very easy way of doing this with a random projection.
Form a random matrix X ∈ Rm×d filled with independent N (0, 1) entries, and use it to define

a linear mapping F : Rd → Rm via u 7→ Xu/
√
m. We now verify that F satisfies our requirement

with high probability. Let xi ∈ Rd denote the ith row of X, and consider some fixed u ̸= 0.
Since xi is a standard normal vector, the variable ⟨xi, u/∥u∥2⟩ follows a N (0, 1) distribution, and
hence the quantity

Y :=
∥Xu∥22
∥u∥22

=

m∑
i=1

⟨xi, u/∥u∥2⟩2,

follows a χ2 distribution with m degrees of freedom, using the independence of the rows. There-
fore, applying the tail bound for chi-squared random variables, we find that

P
[∣∣∣∣∥Xu∥22m∥u∥22

− 1

∣∣∣∣ ≥ δ

]
≤ 2e−mδ2/8, for all δ ∈ (0, 1).
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Rearranging and recalling the definition of F yields the bound

P
[
∥F (u)∥22
∥u∥22

/∈ [(1− δ), (1 + δ)]

]
≤ 2e−mδ2/8, for any fixed 0 ̸= u ∈ Rd.

Noting that there are
(
N
2

)
distinct pairs of data points, we apply the union bound to conclude

that

P
[
∥F (ui − uj)∥22
∥ui − uj∥22

/∈ [(1− δ), (1 + δ)] for some ui ̸= uj
]
≤ 2

(
N

2

)
e−mδ2/8.

For any ϵ ∈ (0, 1), this probability can be driven below ϵ by choosing m > 16
δ2 log(N/ϵ).

Exercise 4. Prove Proposition 6.

Exercise 5. Prove Proposition 7.

2.5 Functional concentration

So far we have only dealt with bounds on averages of random variables, ideally we would like to
extend to concentration for functions of random variables. The question becomes what assump-
tions will we then need on these functions to be able to provide exponential type concentration?

To obtain rapid concentration we need our function to not vary wildly with different potential
inputs, otherwise it would be difficult to control their potential outputs. The first type of
functions with this stability type behaviour are function with bounded differences. Suppose we
have a function f : Rd → R for all x1, x2, . . . , xd, x

′
1, x

′
2, . . . , x

′
d ∈ R

|f(x′1, x2, . . . , xj , . . . , xd)− f(x1, x2, . . . , xj , . . . , xd)| ≤ L1

...

|f(x1, x2, . . . , x′j , . . . , xd)− f(x1, x2, . . . , xj , . . . , xd)| ≤ Lj

...

|f(x1, x2, . . . , xj , . . . , x′d)− f(x1, x2, . . . , xj , . . . , xd)| ≤ Ld,

meaning that if we switch any of the single j-th inputs the function will not change by more
than Lj . In this way the function is very stable and we obtain the following:

Proposition 8. (Bounded differences inequality/McDiaramids) Suppose that f satisfies
the bounded difference property with parameters (L1, . . . , Ln) and that the random vector

X = (X1, X2, . . . , Xn)

has independent components. Then

P
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2e

− 2t2∑n
k=1

L2
k for all t ≥ 0.

This has been used in a variety of settings, for instance it has been used to show that stable
learning algorithm generalize well to unseen inputs. We will look at two uses of this inequality,
one which involves U -statistics and another involving Erdos-Renyi random graphs.
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Example 6. Let g : R2 → R be a bounded symmetric function of its arguments (say ∥g∥∞ ≤ b).
Given an IID sequence Xk, k ≥ 1, of random variables, the quantity

U :=
1(
n
2

) ∑
j<k

g(Xj , Xk) (1)

is as a pairwise U-statistic. For instance, if g(s, t) = |s − t|, then U is an unbiased estimator of
the mean absolute pairwise deviation E[|X1−X2|]. While U is not a sum of independent random
variables, the dependence is relatively weak. Viewing U as a function f(x) = f(x1, . . . , xn), for
any given coordinate k, we have

|f(x1, . . . , x′j , . . . , xn)− f(x1, . . . , xj , . . . , xn)| ≤
1(
n
2

) ∑
i ̸=j

|g(xi, xj)− g(xi, x
′
j)|

≤ (n− 1)(2b)(
n
2

) =
4b

n
,

so that the bounded differences property holds with parameter Lj =
4b
n in each coordinate. Thus,

we conclude that

P(|U − E[U ]| ≥ t) ≤ 2e−
nt2

8b2 .

This tail inequality implies that U is a consistent estimate of E[U ], and provides a finite
sample guarantee for its performance. Similar techniques can be used to obtain tail bounds on
U-statistics of higher order, involving sums over k-tuples of variables. Note that is the random
variables were bounded instead of the function g(·, ·) the same bound would hold.

Example 7. (Clique number in random graphs) An undirected graph is a pair G = (V,E),
composed of a vertex set V = {1, . . . , d} and an edge set E, where each edge e = (i, j) is an
unordered pair of distinct vertices (i ̸= j). A graph clique C is a subset of vertices such that
(i, j) ∈ E for all i, j ∈ C.

The clique number C(G) of the graph is the cardinality of the largest clique—note that
C(G) ∈ [1, d]. When the maximum clique is of size 1, the graph will be fully disconnected, while
a maximum clique of size d means every node is connected with every other node. If the edges
E of the graph are drawn according to some random process, then the clique number C(G) is a
random variable, and we can study its concentration around its mean E[C(G)].

The Erdös–Rényi ensemble of random graphs is one of the most well-studied and simplest
model. For each i < j (this is so you don’t include the same edge twice), introduce a Bernoulli
edge-indicator variable Xij with parameter p ∈ (0, 1), where Xij = 1 means that edge (i, j) is
included in the graph, and Xij = 0 means that it is not included.

The
(
d
2

)
-dimensional random vector Z := {Xij}i<j specifies the edge set; thus, we may view

the clique number C(G) as a function Z 7→ f(Z). Let Z ′ denote a vector in which a single
coordinate of Z has been changed, and let G′ and G be the associated graphs. Then C(G′) can
differ from C(G) by at most 1, so that |f(Z ′) − f(Z)| ≤ 1. Thus, the function C(G) = f(Z)
satisfies the bounded difference property in each coordinate with parameter Lj = 1, so

P
[
1

n
|C(G)− E[C(G)]| ≥ δ

]
≤ 2e−2nδ2 .

Consequently, the clique number of an Erdös–Rényi random graph is very sharply concen-
trated around its expectation (although we have not calculated its expectation, but you can try
it!).
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Figure 1: Illustration of what different clique sizes looks like, clique sizes are used as a descriptive
statistic for graphs. The title of each sub-plot: Ki : j indicate the number of nodes (i) and the
number of total edges (j). You can think of them as groups of friends or perhaps more realistically
as enemies.

The other form of “smoothness” that is commonly used is Lipschitz continuity of a function.
We say that a function f : Rn → R is L-Lipschitz with respect to the Euclidean norm if:

|f(x)− f(y)| ≤ L∥x− y∥2 for all x, y ∈ Rn.

This condition controls how much the function varies with different inputs, but contrary to
the bounded difference assumption, this function can now be unbounded. Also recall that by
Rademacher’s theorem Lipschitz functions are differentiable almost everywhere.

Theorem 4. Let (X1, . . . Xn) be a vector of IID standard Gaussian random variables and let
f : Rn → R be a L-Lipschitz function with respect to the Euclidean norm. Then f(X)−E[f(X)]
is sub-Gaussian with parameter at most L and

P[|f(X)− E[f(X)]| ≥ t] ≤ 2 exp

(
−t2

2L2

)
for all t ≥ 0.

Note this bound is dimension free and the concentration only depends on L, but it is possible
for L to increase with n however.

To use this result, let us consider a random matrix of standard Gaussians, in particular we
are interested in the singular values of such matrices. We saw in the Johnson-Lindenstrauss
example that these matrices are interesting objects of study.

As a reminder for a real matrix A ∈ Rn×d, the singular value decomposition is:

A =

r∑
i=1

si(A)uiv
⊤
i , where r = rank(A).
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The non negative numbers si(A) are called the singular values of A, the vectors ui ∈ Rn are the
left singular vectors of A, and vi ∈ Rd are the right singular vectors of A. The singular values
are the square root of the singular values of the matrix A⊤A or equivalently AA⊤, specifically if
λi(A) denotes the i-th largest eigenvalue of a real symmetric matrix:

si(A) =
√
λi(A⊤A) =

√
λi(AA⊤).

If we have a square symmetric real matrix, then the singular values are simply the absolute
values of the eigenvalues.

The following lemma is quite useful in bounding the effect of a small perturbation on the
singular values of a matrix:

Lemma 3. Weyl’s lemma. Given two matrices X and Y in Rn×d, we have

max
i=1,...,d

|sk(X)− sk(Y )| ≤ s1(X − Y ) ≤ ∥X − Y ∥F ,

where ∥·∥F is the Frobenius norm of a Rn×d matrix:

∥A∥F =

√√√√ n∑
i=1

d∑
j=1

a2ij =
√
Trace(A⊤A) =

√√√√min(n,d)∑
i=1

si(A).

You can think of the Frobenius norm as being a vectorized L2 norm of a matrix.

Example 8. (Singular values of Gaussian random matrices) For integers n > d, let X ∈
Rn×d be a random matrix with i.i.d. N (0, 1) entries, and let

s1(X) ≥ s2(X) ≥ · · · ≥ sd(X)

denote its ordered singular values. Let us think us sk as functions which maps Rn×d → R+. By
Weyl’s lemma, given another matrix Y ∈ Rn×d, we have

max
k=1,...,d

|sk(X)− sk(Y )| ≤ ∥X − Y ∥F =

√√√√ n∑
i=1

d∑
j=1

(xij − yij)2,

which shows that each singular value sk(X) is a 1-Lipschitz function of the random matrix, so
that by Theorem 4, for each k = 1, . . . , d,

P(|sk(X)− E[sk(X)]| ≥ δ) ≤ 2e−
δ2

2 for all δ ≥ 0.

Consequently, we are guaranteed that the expectations are representative of the typical be-
havior of the random singular values. It turns out that characterizing the distribution of the
expectations of these singular values is much more difficult as we need to consider the structures
of these random matrices much more carefully.

Random matrix theory is quite rich and interesting (Terrance Tao has a nice set of notes on
this) and we consider some additional results related to the concentration of sums of matrices
when we consider covariance estimation.

Finally, what if we don’t have a Gaussian distribution? Well, for a general class of strongly
log-concave distributions a similar type of concentration exists as well:
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Definition 5. A distribution supported in Rn with density p(x) = exp(−ψ(x)) is said to be γ
strongly log concave if there exists a γ > 0 such that:

λψ(x) + (1− λ)ψ(y)− ψ(λx+ (1− λ)y) ≥ γ

2
λ(1− λ)∥x− y∥22,

for all λ ∈ [0, 1] and x, y ∈ Rn.

Theorem 5. Let P be any strongly log-concave distribution with parameter γ > 0. Then for any
L-Lipschitz function with respect to the Euclidean norm:

P [|f(X)− E[f(X)]| ≥ t] ≤ 2 exp

(
−γt2

4L2

)
.

A Gaussian distribution with non-singular covariance function is strongly log-concave, so we
can think of this result as a generalization of the result for IID Gaussians with a slightly worse
rate. The log-concave and strongly log-concave assumption is commonly used to obtain fast rates
of convergence in the literature, see Saumard and Wellner (2014) for a review on the subject.

An entire course could be made on concentration inequalities, but we will stop here for now
and revisit additional concentration result for matrices down the line. But if these types of
result are of interest to you, please see Boucheron et al. (2013) where a large collection such such
bounds are proved and documented.

3 Linear Regression

3.1 Introduction

Linear regression is one of the first models with covariates (or features) that you have seen in
your undergraduate studies. We revisit it here with a (potentially) slightly different perspective.

Most regression models can be written in the form of:

Yi = f(xi) + ϵi, i = 1, . . . , n,

where f(·) is some functional relationship and ϵi are some centred error terms. In this chapter
we assumed ϵ = (ϵ1, . . . , ϵn) follows some sub-Gaussian distribution with proxy variance σ2 and
E[ϵi] = 0, and that f(x) = x⊤θ for some θ ∈ Rd. Specifically we assume the data generating
model is:

Yi = x⊤i θ
⋆ + ϵi, i = 1, . . . , n,

Note that the sub-Gaussian assumption doesn’t require the errors to be independent or iden-
tically distributed (but the dependence cannot be too large or else σ2 won’t be constant in n), so
the results we will show are direct extensions of the traditional analysis performed with Gaussian
errors.

We also assume that we a fixed design meaning that our covariates are deterministic and not
random, you can think of this as equivalently conditioning the statistical analysis to the observed
values of X.

3.2 Bounds on MSE

We first consider the performance of our estimated models in terms of the Mean Square Error
(MSE), for a general regression problem this is:

MSE(f̂n) =
1

n

n∑
i=1

(
f̂n(xi)− f(xi)

)2
,
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for us this will simply to

MSE(Xθ̂) =
1

n
∥X(θ̂n − θ⋆)∥22,

where θ̂n is some estimated value for the regression parameter and θ⋆ is the true data-generating
value of θ.

3.2.1 Unconstrained least squares

We define the least squares estimator θ̂LS to be any vector which satisfies:

θ̂LS ∈ arg min
θ∈Rd

∥Y −Xθ∥22,

this solution may or may not be unique depending on the design matrix X . You may have seen
some version of the least squares solution involving an inverse of the kind (X⊤X)−1, but even
when this matrix is non-invertible we can always define a solution through the Moore-Penrose
pseudoinverse of the matrix X⊤X. We denote the pseudoinverse of a matrix A ∈ Rm×n as A†,
this pseudoinverse can be thought of as providing an approximate solution to this system of
equation:

Ax = b

with the property that for all x ∈ Rn ∥Ax − b∥2 ≥ ∥Az − b∥2 for z = A†b; this can be thought
of as providing the least squares solution to this system of equations when it cannot be solved
exactly.

In the simplest scenario with no constraints, the following proposition characterizes the least
squares estimator for θ:

Proposition 9. The least squares estimator θ̂LS ∈ Rd satisfies

X⊤Xθ̂LS = X⊤Y.

Moreover, θ̂LS can be chosen to be

θ̂LS = (X⊤X)†X⊤Y,

where (X⊤X)† denotes the Moore-Penrose pseudoinverse of X⊤X.

Proof. The function θ 7→ |Y −Xθ|22 is convex so any of its minima satisfies

∇θ|Y −Xθ|22 = 0,

where ∇θ is the gradient operator. We have

∇θ|Y −Xθ|22 = ∇θ{|Y |22 − 2Y ⊤Xθ + θ⊤X⊤Xθ} = −2(Y ⊤X − θ⊤X⊤X)⊤.

Therefore, solving ∇θ|Y −Xθ|22 = 0 yields

X⊤Xθ = X⊤Y.

From here on out, we use ≲ symbol to mean < with all constants independent of dimensions
and sample size being ommited. For example, f(n, p) = 10 log(p)n ≲ log(p)n.
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Theorem 6. Assume that the linear model holds where ε ∼ subGn(σ
2). Then the least squares

estimator θ̂LS satisfies

E[MSE(Xθ̂LS)] =
1

n
E|Xθ̂LS −Xθ∗|22 ≲ σ2 r

n
,

where r = rank(X⊤X). Moreover, for any δ > 0, with probability at least 1− δ,

MSE(Xθ̂LS) ≲ σ2 r + log(1/δ)

n
.

Proof. By definition of the least squares estimator

|Y −Xθ̂LS|22 ≤ |Y −Xθ∗|22 = |ε|22.

Moreover,

|Y −Xθ̂LS|22 = |Xθ∗ + ε−Xθ̂LS|22 = |Xθ̂LS −Xθ∗|22 − 2ε⊤X(θ̂LS − θ∗) + |ε|22.

Therefore,

|Xθ̂LS −Xθ∗|22 ≤ 2ε⊤X(θ̂LS − θ∗) = 2|Xθ̂LS −Xθ∗|2
ε⊤X(θ̂LS − θ∗)

|X(θ̂LS − θ∗)|2
,

and therefore: |Xθ̂LS −Xθ∗|2 ≤ 2
ε⊤X(θ̂LS − θ∗)

|X(θ̂LS − θ∗)|2
.

It is difficult to control
ε⊤X(θ̂LS − θ∗)

|X(θ̂LS − θ∗)|2
,

as θ̂LS depends on ε and this dependency may be complicated. To remove this dependency, we
can “sup-out” θ̂LS , note that the vector X(θ̂LS − θ∗)/|X(θ̂LS − θ∗)|2 lives on a unit sphere of
dimension n and we could immediate use our results of Theorem 3 to bound this quantity, but
this will give us a very crude upper bound.

First we reduce the dimensionality of the problem, let Φ = [ϕ1, . . . , ϕr] ∈ Rn×r be an orthonor-

mal basis of the column span ofX. In particular, there exists ν ∈ Rr such thatX(θ̂LS−θ∗) = Φν.
This gives

ε⊤X(θ̂LS − θ∗)

|X(θ̂LS − θ∗)|2
=
ε⊤Φν

|Φν|2
=
ε⊤Φν

|ν|2
= ε̃⊤

ν

|ν|2
≤ sup

u∈B2

ε̃⊤u,

where B2 is the unit ball of Rr and ε̃ = Φ⊤ε. Thus

E[|Xθ̂LS −Xθ∗|22] ≤ E[4 sup
u∈B2

(ε̃⊤u)2],

Note that, ε̃ ∼ subGr(σ
2) as well (show this as an exercise). Therefore to conclude the bound

in expectation, observe that Exercise 6 yields

4E[ sup
u∈B2

(ε̃⊤u)2] = 4

r∑
i=1

E[ε̃2i ] ≤ 16σ2r.

Although in the proof of the expectation bound we did not directly use Theorem 3, for the bound
in probability we will need the the last step in the proof of Theorem 3 that

sup
u∈B2

(ε̃⊤u)2 ≤ 8 log(6)σ2r + 8σ2 log(1/δ),

with probability 1− δ,
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Exercise 6. Moments of sub-Gaussian random variables. Let X be any random variable
such that

P[|X| > t] ≤ 2 exp

(
− t2

2σ2

)
,

then for any positive integers k ≥ 1,

E[|X|k] ≤ (2σ2)k/2kΓ(k/2).

3.2.2 Constrained Estimation

Sometimes it is more efficient to work with constrained a constrained estimation problem rather
than the full parameter set if we have additional information on possible solutions. A convenient
and useful choice are K ⊂ Rd symmetric convex sets. If we know a priori that θ∗ ∈ K, we may
prefer a constrained least squares estimator θ̂LSK defined by

θ̂LSK ∈ argmin
θ∈K

|Y − Xθ|22.

The fundamental inequality used in the proof of the unconstrained estimator would still hold
and the bounds on the MSE may be smaller. Indeed, we have

|Xθ̂LSK − Xθ∗|22 ≤ 2ε⊤X(θ̂LSK − θ∗) ≤ 2 sup
θ∈K−K

(ε⊤Xθ),

where K −K = {x − y : x, y ∈ K}. It is easy to see that if K is symmetric and convex, then
K −K = 2K so that

2 sup
θ∈K−K

(ε⊤Xθ) = 4 sup
v∈XK

(ε⊤v)

where XK = {Xθ : θ ∈ K} ⊂ Rn.
We consider the estimation problem constrained to an L1 ball. This will involve controlling

the complexity of the L1 ball, similar to what we have done in Theorem 3:

Theorem 7. Let P be a polytope with N vertices v(1), . . . , v(N) ∈ Rd and let X ∈ Rd be a random
vector such that [v(i)]⊤X, i = 1, . . . , N , are sub-Gaussian random variables with variance proxy
σ2. Then

E
[
max
θ∈P

θ⊤X

]
≤ σ

√
2 log(N),

and

E
[
max
θ∈P

|θ⊤X|
]
≤ σ

√
2 log(2N).

Moreover, for any t > 0,

P
(
max
θ∈P

θ⊤X > t

)
≤ Ne−

t2

2σ2 ,

and

P
(
max
θ∈P

|θ⊤X| > t

)
≤ 2Ne−

t2

2σ2 .

The proof is omitted as it is similar to some of the previous results. Recall that the L1 ball
(of radius 1) is defined by

B1 = {x ∈ Rd :

d∑
i=1

|xi| ≤ 1},
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and it has exactly 2d vertices V = {e1,−e1, . . . , ed,−ed}, where ej is the j-th vector of the
canonical basis of Rd. This implies that the set XK = {Xθ, θ ∈ K} ⊂ Rn is also a polytope with
at most 2d vertices that are in the set XV = {X1,−X1, . . . ,Xd,−Xd} where Xj is the j-th column
of X. Indeed, XK is obtained by rescaling and embedding (resp. projecting) the polytope K
when d ≤ n (resp., d ≥ n).

Theorem 8. Let B1 be the unit ℓ1 ball of Rd, d ≥ 2 and assume that θ∗ ∈ B1. Moreover, assume
the conditions of Theorem 6 and that the columns of X are normalized such that maxj |Xj |2 ≤

√
n.

Then the constrained least squares estimator θ̂LSB1
satisfies

E[MSE(Xθ̂LSB1
)] =

1

n
E|Xθ̂LSB1

− Xθ∗|22 ≲ σ

√
log d

n
.

Moreover, for any δ > 0, with probability 1− δ, it holds

MSE(Xθ̂LSB1
) ≲ σ

√
log(d/δ)

n
.

The rate in the decay of MSE in the number of samples is now
√
n rather than n which is

worse than the unconstrained problem, however the dimension dependency is now logarithmic
instead of linear; we can think of the rank of X⊤X as d if the matrix is invertible.

Proof. From the same steps as in the proof of Theorem 6, we eventually arrive at

|Xθ̂LSB1
− Xθ∗|22 ≤ 4 sup

v∈XK
(ε⊤v).

Observe now that since ε ∼ subGn(σ
2), for any column Xj such that |Xj |2 ≤

√
n, the random vari-

able ε⊤Xj ∼ subG(nσ2). Therefore, applying Theorem 7, we get the bound on E[|MSE(Xθ̂LSK )|]
and for any t ≥ 0,

P [|MSE(Xθ̂LSK )| > t] ≤ P [ sup
v∈XK

(ε⊤v) > nt/4] ≤ 2de−
nt2

32σ2 .

To conclude the proof, we find t such that

2de−
nt2

32σ2 ≤ δ ⇔ t2 ≥ 32σ2 log(2d)

n
+ 32σ2 log(1/δ)

n
,

which shows the second statement of the Theorem.

Note that the proof of Theorem 6 also applies to θ̂LSB1
(exercise!) so that Xθ̂LSB1

benefits from
the best of both rates,

E[|MSE(Xθ̂LSB1
)|] ≲ min

(
σ2 r

n
, σ

√
log d

n

)
.

This is called an elbow effect, this elbow takes place around r ≃
√
n (up to logarithmic terms).

This type of constrained estimator may appear similar to the familiar LASSO by the duality
of the optimization problem, although in this case we haven’t quite estimate the “correct” radius
of the constraint so this is slightly worst than the rate for LASSO which we present in the next
sub-section.
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3.2.3 LASSO

Sparsity can take different forms, but a popular one is to consider a vector θ ∈ Rd with only k
non-zero coordinates. Heuristically we can link this to the principal of parsimony where a less
complex explanation is typically preferred over a overly complex one. We call the number of
non-zero coefficients of a vector θ ∈ Rd its ℓ0 “norm”:

|θ|0 =

d∑
j=1

I(θj ̸= 0).

We call a vector θ with ℓ0 << d a sparse vector. More precisely, if |θ|0 ≤ k, we say that θ is a
k-sparse vector. We call

supp(θ) = {j ∈ {1, . . . , d} : θj ̸= 0},

the support of θ.
Denote by B0(k) the ℓ0 “ball” of Rd, i.e., the set of k-sparse vectors, defined by

B0(k) = {θ ∈ Rd : |θ|0 ≤ k}.

Our goal is to control the MSE of θ̂ISK when K = B0(k). Note that computing θ̂ISB0(k)
defined as:

θ̂LSB0(k)
∈ argmin

θ∈B0(k)

|Y − Xθ|22.

but this would require computing
(
d
k

)
least squares estimators (ask yourself why don’t we need to

compute
∑k

i=1

(
d
i

)
estimators) since this loss is no longer smooth due to the constraint; in fact,

this number is exponentially growing in k. In practice this will be hard (or even impossible) but
it is interesting to use the bounds obtained for this constrained problem as a benchmark for the
LASSO and other penalized regressions.

Theorem 9. Fix a positive integer k ≤ d/2. Let K = B0(k) be set of k-sparse vectors of Rd and
assume that θ∗ ∈ B0(k). Moreover, assume the conditions of Theorem 6. Then, for any δ > 0,
with probability 1− δ, it holds

MSE(Xθ̂ISB0(k)
) ≲

kσ2

n
log

(
ed

2k

)
+ log(6)

σ2k

n
+
σ2

n
log(1/δ).

The proof can be found in Rigollet and Hütter (2023), The rate obtained here is roughly of
order k log(k/n)/n which is n−1/2 faster than the L1 constraint, the dependency is also logarithm
d and further this is divided by k. Should we know the true sparsity level, this rate corresponds
to essentially the optimal rate that we can hope for in practice.

The LASSO is the convex relaxation of the l0 constraint problem, searching over reasonable
radius of the L1 ball to penalize and we see this will give us something closer to the optimal rate
in n. Specifically the LASSO estimator is defined as:

arg min
θ∈Rd

|Y − Xθ|22
n

+ λn∥θ∥1,

for some penalty τ . In practice λ is almost always chosen by cross validation, but in our theorem
we will use a theoretical optimal value which depends on the unknown variance σ2.

To obtain the “fast rate” with a scaling of order n in the MSE (rather than n1/2), we require
some additional assumptions on the design matrix.
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Assumption 1. Assumption INC(k) The design matrix X has incoherence k for some integer
k > 0 if ∣∣∣∣XTX

n
− Id

∣∣∣∣
∞

≤ 1

32k

where the |A|∞ denotes the largest element of A in absolute value. Equivalently,

1. For all j = 1, . . . , d, ∣∣∣∣∥Xj∥22
n

− 1

∣∣∣∣ ≤ 1

32k
.

2. For all 1 ≤ i, j ≤ d, i ̸= j, we have

|XT
i Xj |
n

≤ 1

32k
.

We will give more intuition on why this Assumption is necessary in the subsequent section,
but it has to do with the geometry of when it is possible to recover the sparse signal.

For any θ ∈ Rd, S ⊂ {1, . . . , d}, define θS to be the vector with coordinates

θS,j =

{
θj if j ∈ S,

0 otherwise.

In particular |θ|1 = |θS |1 + |θSc |1. The following Lemma will help us bound some key quantities
that will appear in the main proof.

Lemma 4. Fix a positive integer k ≤ d and assume that X satisfies assumption INC(k). Then,
for any S ∈ {1, . . . , d} such that |S| ≤ k and any θ ∈ Rd that satisfies the cone condition

|θSc |1 ≤ 3|θS |1,

it holds that

|θ|22 ≤ 2
|Xθ|22
n

.

Theorem 10. Fix n ≥ 2. Assume that the linear model holds where ε ∼ subGn(σ
2). Moreover,

assume that ∥θ∗∥0 ≤ k and that X satisfies assumption INC(k). Then the Lasso estimator θ̂L

with regularization parameter defined by

λn = 8σ

√
log(2d)

n
+ 8σ

√
log(1/δ)

n

satisfies

MSE(Xθ̂L) =
1

n
∥Xθ̂L −Xθ∗∥22 ≲ kσ2 log(2d/δ)

n
. (2)

and

∥θ̂L − θ∗∥22 ≲ kσ2 log(2d/δ)

n
. (3)

with probability at least 1− δ.
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Proof. From the definition of θ̂L, it holds

1

n
∥Y −Xθ̂L∥22 ≤ 1

n
∥Y −Xθ∗∥22 + λn∥θ∗∥1 − λn∥θ̂L∥1.

Adding τ∥θ̂L − θ∗∥1 on each side and multiplying by n, we get

∥Xθ̂L −Xθ∗∥22 + nτ∥θ̂L − θ∗∥1 ≤ 2ε⊤X(θ̂L − θ∗) +
nλn
2

∥θ̂L − θ∗∥1 + nλn∥θ∗∥1 − nλn∥θ̂L∥1.

Applying Hölder’s inequality

ε⊤X(θ̂L − θ∗) ≤ |ε⊤X|∞|θ̂L − θ∗|1

≤ nλn
4

|θ̂L − θ∗|1,
as

P(|X⊤ε|∞ ≥ t) = P( max
1≤j≤d

|X⊤
j ε| > t) ≤ 2de−

t2

4nσ2

where used the fact that |Xj |22 ≤ n+1/(32k) ≤ 2n and took t = σ
√

2n log(2d)+σ
√

2n log(1/δ) =
nλn/2, which implies this inequality holds with probability at least 1 − δ. Therefore, taking
S = supp(θ∗) to be the support of θ∗, we get

|Xθ̂L − Xθ∗|22 +
nλn
2

|θ̂L − θ∗|1 ≤ nλn|θ̂L − θ∗|1 + nλn|θ∗|1 − nλn|θ̂L|1

= nλn|θ̂LS − θ∗|1 + nλn|θ∗|1 − nλn|θ̂LS |1
≤ 2nλn|θ̂LS − θ∗|1. (4)

In particular, it implies that
|θ̂LSc − θ∗Sc |1 ≤ 3|θ̂LS − θ∗S |1,

so that θ = θ̂L − θ∗ satisfies the cone condition in Lemma 4. Using now the Cauchy-Schwarz
inequality and Lemma 4 respectively, we get, since |S| ≤ k,

|θ̂LS − θ∗|1 ≤
√
|S||θ̂LS − θ∗|2 ≤

√
|S||θ̂L − θ∗|2 ≤

√
2k

n
|Xθ̂L − Xθ∗|2.

Combining this result with Equation 4, we find

|Xθ̂L − Xθ∗|22 ≤ 8nkλ2n.

This concludes the proof of the bound on the MSE. To prove the upper bound 3, we use Lemma
4 once again to get

|θ̂L − θ∗|22 ≤ 2MSE(Xθ̂L) ≤ 16kλ2n.

3.2.4 SLOPE

By comparing the rates for LASSO and the L0 constraint estimation problem the logarithm looks
like log(ed/2k) whereas in LASSO we are missing the division by k in the logarithm. In practice
this may not change things for small k, but ideally we would like to match that of the “optimal”
(we haven’t shown optimality officially) rate.

Instead of penalizing every coordinate with the same weight, we will now aim to make the
penalty proportional to the signal size, and this will turn out to be the key insight to obtain a
new optimal procedure but we need to assume the error distributions is an isotropic Gaussian.
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Definition 6. (Slope estimator). Let λ = (λ1, . . . , λd) be a non-increasing sequence of positive
real numbers, λ1 ≥ λ2 ≥ · · · ≥ λd > 0. For θ = (θ1, . . . , θd) ∈ Rd, let (θ∗1 , . . . , θ

∗
d) be a non-

increasing rearrangement of the modulus of the entries, |θ1|, . . . , |θd|. We define the sorted ℓ1
norm of θ as

|θ|∗ =

d∑
j=1

λjθ
∗
j ,

or equivalently as

|θ|∗ = max
ϕ∈Sd

d∑
j=1

λj |θϕ(j)|.

The Slope estimator is then given by

θ̂S ∈ arg min
θ∈Rd

{
1

n
∥Y −Xθ∥22 + τ |θ|∗

}
for a choice of tuning parameters λ and τ > 0.

Slope stands for Sorted L-One Penalized Estimation, and is motivated by the quest for a
penalized estimation procedure that could offer a control of false discovery rate (FDR) for the

hypothesesH0,j : θ
∗
j = 0. We should check that |·|∗ is indeed a norm and that θ̂S can be computed

efficiently, for example by proximal gradient algorithms; we will have a small subsection on this
in the lecture time permitting.

In what follows, we use
λj =

√
log(2d/j), j = 1, . . . , d.

Theorem 11. Fix n ≥ 2. Assume that the linear model holds where ε ∼ Nn(0, σ
2In). Moreover,

assume that |θ∗|0 ≤ k and that X satisfies assumption INC(k′) with k′ ≥ 4k log(2de/k). Then

the Slope estimator θ̂S with regularization parameter defined by

τ = 4
√
2σ

√
log(1/δ)

n
(5)

satisfies

MSE(Xθ̂S) =
1

n
∥Xθ̂S − Xθ∗∥22 ≲ σ2 k log(2d/kδ)

n
(6)

and

∥θ̂S − θ∗∥22 ≲ σ2 k log(2d/k) log(1/δ)

n
. (7)

with probability at least 1− δ.

Therefore up to constants we see that SLOPE recovers the behaviour of best subset selection,
although we need to assume a specific (isotropic and homoskedastic) error model. See Rigollet
and Hütter (2023) for a proof with a suboptimal rate (but it is easier to digest than the original).

Remark 4. If you have seen Gauss-Markov’s theorem then you may be wondering how come
LASSO and SLOPE beats out the unconstrained least squares estimate when it is ”optimal”. It’s
worth recalling that optimality was defined as the best linear unbiased estimator and that both
LASSO and SLOPE are biased.
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3.3 Sparse set recovery

When LASSO is first introduced, it is usually seen as a method of recovering the sparse set of
active coordinates and not necessarily as a way of reducing the MSE of the prediction problem.
In this section we aim to prove that under assumptions on the fixed design matrix and on the
minimal size of the signal, we can recover the active coordinate set with high-probability.

But first let us think of why sparse recovery is even desirable. The most immediate answer
is that parsimony is a desired quality in any model, but let us consider the following example
taken from Wainwright (2019) for a more exotic use of linear models:

Example 9. (Selection of Gaussian graphical models) A zero-mean Gaussian random vector
(Z1, . . . , Zd) with a non-degenerate covariance matrix has a density of the form

pΘ∗(z1, . . . , zd) =
1√

(2π)d det((Θ∗)−1)
exp

(
−1

2
zTΘ∗z

)
,

where Θ∗ ∈ Rd×d is the inverse covariance matrix, also known as the precision matrix. For
many interesting models, the precision matrix is sparse, with relatively few non-zero entries.
The problem of Gaussian graphical model selection is to infer the non-zero entries in the matrix
Θ∗.

It turns out this problem can be reduced to a sparse linear regression problem. For a given
index s ∈ V := {1, 2, . . . , d}, suppose that we are interested in recovering its neighborhood,
meaning the subset

N (s) := {t ∈ V | Θ∗
st ̸= 0}.

In order to do so, imagine performing a linear regression of the variable Zs on the (d − 1)-
dimensional vector Z\{s} := {Zt, t ∈ V \{s}}. We can write

Zs︸︷︷︸
response y

= ⟨ Z\{s}︸ ︷︷ ︸
predictors

, θ∗⟩+ ws,

where ws is a zero-mean Gaussian variable, independent of the vector Z\{s}. Moreover, the

vector θ∗ ∈ Rd−1 has the same sparsity pattern as the sth off-diagonal row

(Θ∗
st, t ∈ V \{s})

of the precision matrix.

Before we begin with the sparse recovery of the noisy version of the problem, let us think
about the deterministic version of the problem. Suppose that you are asked to solve the following
system of equations for θ:

Xθ = Y,

with X ∈ Rn×d, θ ∈ Rd and Y ∈ Rn with d > n, then it is impossible to find a unique solution
to this system of equation. But if you are certain that the θ vector is k-sparse, for some k < n,
then you have some hope of having an unique solution. The brute force approach would be to
manually try to solve the following constrained system

min
θ∈Rd

∥θ∥0 such that Xθ = Y,

we instead consider the convex relaxation of this problem by using:

min
θ∈Rd

∥θ∥1 such that Xθ = Y,
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Figure 2: Figure taken from Wainwright (2019) Chapter 7. (a) shows the favorable case where
the set θ⋆ + null(X) only intersects the tangent cone at θ⋆, so that any other solution will
have greater L1 norm. (b) shows the unfavorable case as the minimum L1 solution will lie in
the interior of the tangent cone meaning it won’t be θ⋆, nor will it necessarily have the correct
sparsity pattern.

this is called basis pursuit and it is an example of a Linear Program (LP).
If the true θ⋆ has support S, then intuitively the success of basis pursuit should depend on

how the nullspace of X is related to this support, as well as the geometry of the ℓ1-ball. The
nullspace of X is given by null(X) := {∆ ∈ Rd | X∆ = 0}. Since Xθ∗ = y by assumption, any
vector θ∗ + ∆ for some ∆ ∈ null(X) is s solution to the basis pursuit program. Consider the
tangent cone of the ℓ1-ball at θ

∗, given by

T(θ∗) = {∆ ∈ Rd | ∥θ∗ + t∆∥1 ≤ ∥θ∗∥1 for some t > 0}. (8)

As illustrated in Figure 2, this set captures the set of all directions relative to θ∗ along which
the ℓ1-norm remains constant or decreases. The set θ∗+null(X), drawn with a solid line in Figure
2, corresponds to the set of all vectors that are feasible for the basis pursuit LP. Consequently,
if θ∗ is the unique optimal solution of the basis pursuit LP, then it must be the case that the
intersection of the nullspace null(X) with this tangent cone contains only the zero vector. This
favorable case is shown in Figure 2(a), whereas Figure 2(b) shows the non-favorable case, in
which θ∗ need not be optimal.

Using Equation 8 let us derive a condition under which recovery is possible; a condition which
will not rely on knowledge of the true value of θ⋆. For any t > 0

∥θ∗∥1 − ∥t∆S∥1 + ∥t∆Sc∥ ≤ ∥θ∗ + t∆S∥1 + ∥t∆Sc∥1 = ∥θ∗ + t∆∥1 ≤ ∥θ∗∥1,
therefore ∥∆Sc∥ ≤ ∥∆S∥1

would imply that Equation 8 holds; let us define the set:

C(S) := {δ ∈ Rd : ∥∆Sc∥ ≤ ∥∆S∥1}
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Definition 7. The matrix X satisfies the restricted nullspace property with respect to S if C(S)∩
null(X) = {0}.

The restricted nullspace property is equivalent to the success of the basis pursuit LP in the
following sense:

Theorem 12. The following two properties are equivalent:

(a) For any vector θ∗ ∈ Rd with support S, the basis pursuit program applied with y = Xθ∗

has unique solution θ̂ = θ∗.

(b) The matrix X satisfies the restricted nullspace property with respect to S.

Proof. We first show that (b) ⇒ (a). Since both θ̂ and θ∗ are feasible for the basis pursuit

program, and since θ̂ is optimal, we have ∥θ̂∥1 ≤ ∥θ∗∥1. Defining the error vector ∆̃ := θ̂ − θ∗,
we have

∥θ∗S∥1 = ∥θ∗∥1 ≥ ∥θ∗ + ∆̃∥1 = ∥θ∗S + ∆̃S∥1 + ∥∆̃Sc∥1 ≥ ∥θ∗S∥1 − ∥∆̃S∥1 + ∥∆̃Sc∥1,

where we have used the fact that θ∗Sc = 0, and applied the triangle inequality. Rearranging
this inequality, we conclude that the error ∆̃ ∈ C(S). However, by construction, we also have
X∆̃ = 0, so ∆̃ ∈ null(X) as well. By our assumption, this implies that ∆̃ = 0, or equivalently

that θ̂ = θ∗.
In order to establish the implication (a) ⇒ (b), it suffices to show that, if the ℓ1-relaxation

succeeds for all S-sparse vectors, then the set null(X) \ {0} has no intersection with C(S). For
a given vector θ∗ ∈ null(X) \ {0}, consider the basis pursuit problem

min
β∈Rd

∥β∥1 such that Xβ = X

[
θ∗S
0

]
. (7.11)

By assumption, the unique optimal solution will be β̄ = [θ∗S 0]T . Since Xθ∗ = 0 by assumption,
the vector [0 − θ∗Sc ]T is also feasible for the problem, and, by uniqueness, we must have
∥θ∗S∥1 < ∥θ∗Sc∥1, implying that θ∗ /∈ C(S) as claimed.

Checking the restricted null space condition is difficult as it requires knowledge of the correct
sparse set S, so in general easier to verify sufficient conditions are needed.

Proposition 10. If ∣∣∣∣XTX
n

− Id

∣∣∣∣
∞

≤ 1

3k
,

then the restrict null space condition holds for all subsets of cardinality at most k.

Note that this guarantees that the restricted nullspace condition holds uniformly for all
possible sets of cardinality k or less, meaning that it doesn’t require specific knowledge of the
correct set S. The above is the incoherence condition that we used in the proof of the LASSO
MSE guarantees; the constant changed from 32 to 3 due to the noise in the estimation problem.
Historically the incoherence condition was the first sufficient condition which was introduced.
Unfortunately the | · |∞ (maximum of the entries) is not a submultiplicative norm, which makes
it harder to work with, another similar condition is the restricted isometry property:

Definition 8. For an integer k, X ∈ Rn×d satisfies a restricted isometry property of order k
with constant δk(X) > 0 if ∥∥∥∥X⊤

S XS

n
− Ik

∥∥∥∥
op

≤ δk(X)

for all subsets of size at most k.
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Proposition 11. If the RIP constant of order 2k is bounded as δ2k < 1/3, then the restricted
null space condition holds for any subset S of cardinality |S| ≤ k.

For a proof of this please see Wainwright (2019) Chapter 7 (proposition 7.11). In general
there are many more conditions on the design which are sufficient to show the restricted null
space condition, all of whom are not necessary. On a last note, the conditions needed for the
noisy version of the estimation needs to be stronger than that of the deterministic version. See
Wainwright (2019) Chapter 7 for discussion on other conditions such as the restricted eigenvalue
condition and others.

Now let us consider when it is possible recover the correct set of active coordinates for LASSO;
we will see one more condition on the design matrix along the way.

Assumption 2. The smallest eigenvalue of the sample covariance submatrix indexed by S is
bounded below:

γmin

(
XT

SXS

n

)
≥ cmin > 0.

Assumption 3. There exists some α ∈ [0, 1) such that

max
j∈Sc

||(XT
SXS)

−1XT
SXj ||1 ≤ α.

Assumption 2 is very mild: in fact, it would be required in order to ensure that the model is
identifiable, even if the support set S were known a priori.

Assumption 3 (mutual incoherence) is a more difficult to interpret. Suppose that we want to
predict the column vector Xj using a linear combination of the columns of XS . The best weight
vector ω̃ ∈ R|S| is

ω̃ = arg min
ω∈R|S|

||Xj −XSω||22 = (XT
SXS)

−1XT
SXj .

The mutual incoherence condition bounds ||ω̃||1. If the column space of XS were orthogonal to
Xj , then the optimal weight vector ω̃ would be identically zero. In general, we cannot expect
this orthogonality to hold, but the mutual incoherence condition imposes a type of approximate
orthogonality. Let

ΠS⊥(X) = In −XS(X
T
SXS)

−1XT
S ,

a type of orthogonal projection matrix.

Theorem 13. Consider an S-sparse linear regression model for which the design matrix satisfies
Assumptions 2 and 3. Then for any choice of regularization parameter such that

λn ≥ 2

1− α

∥∥∥∥∥XT
S ΠS⊥(X)

ϵ

n

∥∥∥∥∥
∞

, (9)

the Lasso program has the following properties:

(a) Uniqueness: There is a unique optimal solution θ̂.

(b) No false inclusion: This solution has its support set Ŝ contained within the true support
set S.

(c) ℓ∞-bounds: The error θ̂ − θ∗ satisfies

∥θ̂S − θ∗S∥∞ ≤

∥∥∥∥∥(XT
SXS

n

)−1

XT
S

ϵ

n

∥∥∥∥∥
∞

+

∥∥∥∥∥(XT
SXS

n

)−1
∥∥∥∥∥
∞

λn︸ ︷︷ ︸
B(λn,X)

,

where ∥A∥∞ = maxi=1,...,s

∑
j |Ai,j | is the matrix ℓ∞-norm.

29



(d) No false exclusion: The Lasso includes all indices i ∈ S such that |θ∗i | > B(λn;X), and
hence is variable selection consistent if mini∈S |θ∗i | > B(λn;X).

As ϵ is a random vector, we need to bound the probability of it satisfying the requirements
of Theorem 13 if we want a meaningful statistical statement.

Corollary 1. For a S-sparse linear model based on a noise vector ϵ with zero-mean i.i.d. σ-
sub-Gaussian entries, and a deterministic design matrix X that satisfies assumptions 2 and 3,
as well as the C-column normalization condition maxj=1,...,d ∥Xj∥2/

√
n ≤ C. Suppose that we

solve the Lasso program with regularization parameter

λn =
2Cσ

1− α

{√
2 log(d− k)

n
+ δ

}
for some δ > 0. Then the optimal solution θ̂ is unique with its support contained within S, and
satisfies the ℓ∞-error bound

∥θ̂S − θ∗S∥∞ ≤ σ
√
cmin

(√
2 log s

n
+ δ

)
+

∥∥∥∥∥
(
XT

SXS

n

)−1
∥∥∥∥∥
∞

λn, (10)

all with probability at least 1− 4e−nδ2/2.

Proof. We first verify that the given choice of regularization parameter satisfies the bound (9)
with high probability. It suffices to bound the maximum absolute value of the random variables

Zj := XT
j

[
In −XS(X

T
SXS)

−1XT
S

] ( ϵ
n

)
, for j ∈ Sc.

Since ΠS⊥(X) = In −XS(X
T
SXS)

−1XT
S is an orthogonal projection matrix, we have

∥ΠS⊥(X)Xj∥2 ≤ ∥Xj∥2 ≤ C
√
n,

by the column normalization assumption. Therefore, each variable Zj is sub-Gaussian with
parameter at most C2σ2/n. From standard sub-Gaussian tail bounds, we have

P
(
max
j∈Sc

|Zj | ≥ t

)
≤ 2(d− s)e−nt2/2C2σ2

,

from which we see that our choice of λn ensures that the bound holds with the claimed probability.
The only remaining step is to simplify the ℓ∞-bound. The second term in this bound is a
deterministic quantity, so we focus on bounding the first term. For each i = 1, . . . , s, consider
the random variable

Z̃i := eTi

(
1

n
XT

SXS

)−1

XT
S ϵ/n.

Since the elements of the vector w are i.i.d. σ-sub-Gaussian, the variable Z̃i is zero-mean and
sub-Gaussian with parameter at most

σ2

n

∥∥∥∥∥
(
1

n
XT

SXS

)−1
∥∥∥∥∥
2

≤ σ2

cminn

where we have used the eigenvalue condition in Assumption 2. Consequently, for any δ > 0, we
have

P

(
max

i=1,...,s
|Z̃i| >

σ
√
cmin

(√
2 log s

n
+ δ

))
≤ 2e−nδ2/2,

from which the claim follows.
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Let us now prove Theorem 13. To do so we will use the Primal Dual Witness method which
we elaborate on below. But first there are some technical details to review. We need to work in
terms of the subdifferential of the ℓ1-norm given that it is not differentiable at 0. Given a convex
function f : Rd → R, we say that z ∈ Rd is a subgradient of f at θ, denoted by z ∈ ∂f(θ), if we
have

f(θ +∆) ≥ f(θ) + ⟨z,∆⟩ for all ∆ ∈ Rd.

When f(θ) = ||θ||1, it can be seen that z ∈ ∂||θ||1 if and only if zj = sign(θj) for all
j = 1, 2, . . . , d. Here we allow sign(0) to be any number in the interval [−1, 1]. For the LASSO
program, we say that a pair (θ, z) ∈ Rd × Rd is primal-dual optimal if θ is a minimizer and
ẑ ∈ ∂||θ||1. Any such pair must satisfy the zero-subgradient condition

1

n
XT (Xθ − y) + λnẑ = 0,

which is the analog of a zero-gradient condition in the non-differentiable setting.
The primal-dual witness method constructs a pair (θ, ẑ) satisfying the zero-subgradient con-

dition, and such that θ has the correct signed support. When this procedure succeeds, the
constructed pair is primal-dual optimal, and acts as a witness for the fact that the Lasso has a
unique optimal solution with the correct signed support.

Definition 9. Primal–dual witness (PDW) construction:

1. Set θ̂Sc = 0.

2. Determine (θ̂S , ẑS) ∈ Rs × Rs by solving the oracle subproblem

θ̂S ∈ arg min
θS∈Rs


1

2n
∥y −XSθS∥22 + λn∥θS∥1︸ ︷︷ ︸

=:f(θS)

 , (11)

and then choosing ẑS ∈ ∂∥θ̂S∥1 such that ∇f(θS)
∣∣
θS=θ̂S

+ λnẑS = 0.

3. Solve for ẑSc ∈ Rd−s via the zero-subgradient equation, and check whether or not the strict
dual feasibility condition ∥ẑSc∥∞ < 1 holds.

Note that the vector θ̂Sc ∈ Rd−s is determined in step 1, whereas the remaining three sub-
vectors are determined in steps 2 and 3. By construction, the subvectors θ̂S , ẑS , and ẑSc satisfy
the zero-subgradient condition. Using the fact that θ̂Sc = θ∗Sc = 0 and writing out this condition
in block matrix form, we obtain

1

n

[
XT

SXS XT
SXSc

XT
ScXS XT

ScXSc

] [
θ̂S − θ∗S

0

]
− 1

n

[
XT

Sw
XT

Scw

]
+ λn

[
ẑS
ẑSc

]
=

[
0
0

]
. (12)

We say that the PDW construction succeeds if the vector ẑSc constructed in step 3 satisfies
the strict dual feasibility condition. The following result shows that this success acts as a witness
for the Lasso in the sense that the solution obtained from the PDW construction matches that
obtained from the LASSO program without knowledge of S:

Lemma 5. If the lower eigenvalue condition (A3) holds, then success of the PDW construction

implies that the vector (θ̂S , 0) ∈ Rd is the unique optimal solution of the Lasso.
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Proof. When the PDW construction succeeds, then θ̂ = (θ̂S , 0) is an optimal solution with

associated subgradient vector ẑ ∈ Rd satisfying ∥ẑSc∥∞ < 1, and ⟨ẑ, θ̂⟩ = ∥θ̂∥1. Now let θ̃ be
any other optimal solution. If we introduce the shorthand notation F (θ) = 1

2n∥y −Xθ∥22, then
we are guaranteed that

F (θ̂) + λn⟨ẑ, θ̂⟩ = F (θ̂) + λn∥θ̂∥1,

and hence
F (θ̂)− λn⟨ẑ, θ̃ − θ̂⟩ = F (θ̃) + λn(∥θ̃∥1 − ⟨ẑ, θ̃⟩).

But by the zero-subgradient conditions, we have λnẑ = −∇F (θ̂), which implies that

F (θ̂) + ⟨∇F (θ̂), θ̃ − θ̂⟩ − F (θ̃) = λn(∥θ̃∥1 − ⟨ẑ, θ̃⟩).

By convexity of F , the left-hand side is negative, which implies that ∥θ̃∥1 ≤ ⟨ẑ, θ̃⟩. But since we

also have ⟨ẑ, θ̃⟩ ≤ ∥θ̃∥1, we must have ∥θ̃∥1 = ⟨ẑ, θ̃⟩. Since ∥ẑSc∥∞ < 1, this equality can only

occur if θ̃j = 0 for all j ∈ Sc.
Thus, all optimal solutions are supported only on S, and hence can be obtained by solving

the oracle subproblem. Given the lower eigenvalue condition, this subproblem is strictly convex,
and so has a unique minimizer.

To prove Theorem 13, it suffices to show that the vector z̃sc ∈ Rd−s constructed in step 3
of the PDW approach satisfies the strict dual feasibility condition. Using the zero-subgradient
conditions, we can solve for the vector z̃Sc ∈ Rd−s

ẑSc = − 1

λnn
XT

ScXS(θ̂S − θ∗s) +XT
Sc

(
ϵ

λnn

)
. (13)

Similarly, using the assumed invertibility of XT
SXS in order to solve for the difference θ̂S − θ∗S

yields
θ̂S − θ∗s = (XT

SXS)
−1XT

S ϵ− λnn(X
T
SXS)

−1ẑS .

Substituting this expression back into equation Equation 13 and simplifying yields

ẑSc = XT
ScXS(X

T
SXS)

−1ẑS︸ ︷︷ ︸
µ

+XT
Sc [I −XS(X

T
SXS)

−1XT
S ]

(
ϵ

λnn

)
︸ ︷︷ ︸

VSc

.

By the triangle inequality, ∥ẑSc∥∞ ≤ ∥µ∥∞ + ∥VSc∥∞. By the mutual incoherence condition
∥µ∥∞ ≤ α. By our choice of regularization parameter, ∥VSc∥∞ ≤ 1

2 (1 − α). Combining these
bounds, we conclude that ∥ẑSc∥∞ ≤ 1

2 (1 + α) < 1, which establishes the strict dual feasibility
condition.

It remains to establish a bound on the ℓ∞-norm of the error θ̂S − θ∗s . From our expression

for θ̂S − θ∗s and the triangle inequality, we have

∥θ̂S − θ∗s∥∞ ≤

∥∥∥∥∥
(
XT

SXS

n

)−1

XT
S

ϵ

n

∥∥∥∥∥
∞

+

∥∥∥∥∥
(
XT

SXS

n

)−1
∥∥∥∥∥
∞

λn,

which completes the proof.
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3.4 Proximal Gradient Descent

The reason why we choose these convex losses is that they are easier to handle from an op-
timization point of view; it is worth introducing some (or at least one) of these optimization
methods. One of the first proposed numerical procedure to obtain the SLOPE estimator is to
use proximal gradient descent which differs from the usual approached used for LASSO, this is
worth discussing in case you have not seen it. [...]

4 Matrix Concentration

Matrices contains additional structure compared to vectors and scalars and specialized techniques
are needed to obtain concentration for sums of random matrices. The most immediate application
of matrix concentration will be covariance estimation but there are other less direct uses such as
spectral clustering for graphs.

4.1 Basic concentration

Recall that we have shown a random sub-Gaussian matrix concentrates towards its expectation
(as the singular value are 1-Lipschitz functions of the matrix), but we have yet to show how large
this expectation can be. In this section we will show a bound on the singular value and use this
to perform spectral clustering on a stochastic block model. Let us review some linear algebra
first. We can characterize singular values and eigenvalues of matrices in a variational manner
via the Courant Fisher min-max theorem, which states that:

λi(A) = max
dim(E)=i

min
x∈S(E)

x⊤Ax

where the maximum is taken over all i-dimensional subspaces E of Rn Using this we can char-
acterize the operator norm or the maximum singular value as follows:

∥A∥ := max
x∈Rn\{0}

∥Ax∥2
∥x∥2

= max
x∈Sn−1

∥Ax∥2.

Equivalently, the operator norm of A can be computed by maximizing the quadratic form
⟨Ax, y⟩ over all unit vectors x, y:

∥A∥ = max
x∈Sn−1, y∈Sm−1

⟨Ax, y⟩.

Since the largest singular value or operator norm is a maximum over an uncountable collection,
we will need to use some familiar tricks to reduce this problem into a finite one through ϵ-net
arguments.

Lemma 6. Let A be an m×n matrix and ε ∈ [0, 1). Then, for any ε-net N of the sphere Sn−1,
we have

sup
x∈N

∥Ax∥2 ≤ ∥A∥ ≤ 1

1− ε
sup
x∈N

∥Ax∥2.

Proof. The lower bound in the conclusion is simple as N ⊂ Sn−1. To prove the upper bound,
fix the unit vector x ∈ Sn−1 which achieves the maximum maxx∈Sn−1 ∥Ax∥2, i.e.

∥A∥ = ∥Ax∥2

33



and choose x0 ∈ N that approximates x so that

∥x− x0∥2 ≤ ε.

By the definition of the operator norm, this implies

∥Ax−Ax0∥2 = ∥A(x− x0)∥2 ≤ ∥A∥∥x− x0∥2 ≤ ε∥A∥.

Using the triangle inequality, we find that

∥Ax0∥2 ≥ ∥Ax∥2 − ∥Ax−Ax0∥2 ≥ ∥A∥ − ε∥A∥ = (1− ε)∥A∥.

Dividing both sides of this inequality by 1− ε, we complete the proof.

You would think this Lemma would be sufficient, but it turns our that it is much better to
work with the following formulation instead:

Lemma 7. Let A be an m× n matrix and ε ∈ [0, 1). Then, for any ε-net N of the sphere Sn−1

and any ε-net M of the sphere Sm−1, we have

sup
x∈N

sup
y∈M

y⊤Ax ≤ ∥A∥op ≤ 1

1− 2ε
sup
x∈N

sup
y∈M

y⊤Ax.

Think about why Lemma 6 would have been a bad idea in the proof to follow. The following
theorem states that the norm of an m × n random matrix A with independent sub-gaussian
entries satisfies

∥A∥op ≲
√
m+

√
n

with high probability, so roughly the square root of max of n or m. It is worth remembering
that for a deterministic matrix, the best general upper bound we can hope for is:

∥A∥op ≤ ∥A∥F = O(
√
nm),

which is growing faster than that of a random matrix. Although these are upper bounds, if they
are taken as tight, then in general a random matrix is “smaller” than a fixed matrix.

Theorem 14. Let A be an m×n random matrix whose entries Aij are independent, mean zero,
σ-sub-gaussian random variables. Then, for any t > 0 we have

∥A∥ ≤ Cσ
(√
m+

√
n+ t

)
with probability at least 1− 2 exp(−t2) for some constant C > 0.

Proof. This proof is based on an ε-net argument. We need to control ⟨Ax, y⟩ for all vectors
x and y on their respective unit spheres. To this end, we discretize each sphere using a net
(approximation step), establish a tight control of ⟨Ax, y⟩ for fixed vectors x and y from the net
(concentration step), and finish by taking a union bound over all x and y in the net.

Step 1: Approximation. Choose ε = 1/4. We can use Lemma 2 to find an ε-net N of the
sphere Sn−1 and an ε-net M of the sphere Sm−1 with cardinalities

|N | ≤ 9n and |M| ≤ 9m.

By Lemma 7, the operator norm of A can be bounded using these nets as follows:

∥A∥ ≤ 2 max
x∈N ,y∈M

⟨Ax, y⟩.
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Step 2: Concentration. Fix x ∈ N and y ∈ M. Then the quadratic form

⟨Ax, y⟩ =
n∑

i=1

m∑
j=1

Aijxiyj

is a sum of independent, sub-gaussian random variables states that the sum is sub-gaussian, and
has proxy variance:

≤ Cσ2
n∑

i=1

m∑
j=1

x2i y
2
j = Cσ2

(
n∑

i=1

x2i

) m∑
j=1

y2j

 = Cσ2.

Recalling the usual sub-Gaussian bound, we can restate this as the tail bound

P {⟨Ax, y⟩ ≥ u} ≤ 2 exp(−u2/Cσ2), u ≥ 0.

Step 3: Union bound. Next, we unfix x and y using a union bound. Suppose the event
maxx∈N ,y∈M⟨Ax, y⟩ ≥ u occurs. Then there exist x ∈ N and y ∈ M such that ⟨Ax, y⟩ ≥ u.
Thus the union bound yields

P
{

max
x∈N ,y∈M

⟨Ax, y⟩ ≥ u

}
≤

∑
x∈N ,y∈M

P {⟨Ax, y⟩ ≥ u} .

Using the tail bound obtained in step 2 and the estimate on the sizes of N and M, we bound
the probability above by

9n+m · 2 exp(−u2/Cσ2).

Choose
u = Cσ(

√
m+

√
n+ t).

Then u2 ≥ C2σ2(n+m+ t2), and if the constant C is chosen sufficiently large, the exponent in
is large enough, say u2/Cσ2 ≥ 3(n+m) + t2. Thus

P
{

max
x∈N ,y∈M

⟨Ax, y⟩ ≥ u

}
≤ 9n+m · 2 exp

(
−3(n+m)− t2

)
≤ 2 exp(−t2).

Finally, combining all three steps together we conclude that

P {∥A∥ ≥ 2u} ≤ 2 exp(−t2).

Recalling our choice of u, which matches the bound used in the statement of the theorem we
complete the proof.

4.2 Stochastic Block Model

The stochastic block model is a generalization of a completely random graph. It is based on the
fact that observed graphs tend to have clusters, think about friendship networks, some types of
people are more likely to be friends than others. In the following example taken from Vershynin
(2018), we will work on deriving guarantees for clustering groups of people into their respective
communities. In particular we start with 2 even communities to make the math simple.

This model divides n vertices into two sets (“communities”) of sizes n/2 each. Construct a
random graph G by connecting every pair of vertices independently with probability p if they
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Figure 3: A random graph generated according to the stochastic block model G(n, p, q) with
n = 200, p = 1/20 and q = 1/200.

belong to the same community and q if they belong to different communities. This distribution
on graphs is called the stochastic block model and is denoted G(n, p, q).

In the special case where p = q we obtain the Erdős-Rényi model G(n, p). But we assume
that p > q here. In this case, edges are more likely to occur within than across communities.
This gives the network a community structure; see Figure 3.

We can identify a graph G by its adjacency matrix A. For a random graph G ∼ G(n, p, q),
the adjacency matrix A is a random matrix, and we will examine A using the tools we developed
on concentration for matrices. Note that to simplify the discussion, we allow nodes to form
self-directed edges with probability p, this would not be the case in practical observed graphs.

We split A into deterministic and random parts,

A = D +R,

where D is the expectation of A. We may think about D as an informative part (the “signal”)
and R as “noise”.

To see why D is informative, let us compute its eigenstructure. The entries Aij have a
Bernoulli distribution; they are either Ber(p) or Ber(q) depending on the community membership
of vertices i and j. Thus the entries of D are either p or q, depending on the membership. For
illustration, if we group the vertices that belong to the same community together, then for n = 4
the matrix D will look like:

D = EA =


p p q q
p p q q
q q p p
q q p p

 .
For arbitrary n this matrix D has rank 2, and the non-zero eigenvalues λi and the corre-

sponding eigenvectors ui

λ1 =

(
p+ q

2

)
n, u1 =


1
1
...
1
1
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λ2 =

(
p− q

2

)
n, u2 =



1
...
−
...

−1

 . (4.17)

The important object here is the second eigenvector u2. It contains all information about
the community structure. If we knew u2, we would identify the communities precisely based on
the sizes of coefficients of u2. But we do not know D = EA, and so we do not have access to u2.
Instead, we know A = D +R, a noisy version of D. The level of the signal D is

∥D∥ = λ1 ≍ n

while the level of the noise R = A−D can be estimated using

∥R∥ ≤ C
√
n with probability at least 1− 4e−n,

as every entry of the adjacency matrix is independent and bounded between [−1, 1], since A only
has 0, 1 entries and D′s entries are between [0, 1].

Thus, for large n, the noise R is much smaller than the signal D. In other words, A is close
to D, and thus we should be able to use A instead of D to extract the community information.
This can be justified using the classical perturbation theory for matrices.

The following theorem is very helpful in determining how well we can estimate the second
eigenvector.

Theorem 15. (Davis-Kahan) Let S and T be symmetric matrices with the same dimensions.
Fix i and assume that the i-th largest eigenvalue of S is well separated from the rest of the
spectrum:

min
j:j ̸=i

|λi(S)− λj(S)| = δ > 0.

Then the angle between the eigenvectors of S and T corresponding to the i-th largest eigenvalues
(as a number between 0 and π/2) satisfies

sin∠(vi(S), vi(T )) ≤
2∥S − T∥

δ
.

The conclusion of the Davis-Kahan theorem implies that the unit eigenvectors vi(S) and
vi(T ) are close to each other up to a sign, namely

∃θ ∈ {−1, 1} : ∥vi(S)− θvi(T )∥2 ≤ 23/2∥S − T∥
δ

.

Our intended method is to use the sign of the estimated second eigenvector to cluster each
observation into their respective communities, we use Davis-Kahan to bound the amount of
mistakes we will make with high-probability.

Let us apply the Davis-Kahan Theorem for S = D and T = A = D +R, and for the second
largest eigenvalue. We need to check that λ2 is well separated from the rest of the spectrum of
D, that is from 0 and λ1. The distance is

δ = min(λ2, λ1 − λ2) = min

(
p− q

2
, q

)
n =: µn.
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Recalling the bound from Theorem 14 on R = T − S and applying it here, we can bound the
distance between the unit eigenvectors of D and A. It follows that there exists a sign θ ∈ {−1, 1}
such that

∥v2(D)− θv2(A)∥2 ≤ C
√
n

µn
=

C

µ
√
n

with probability at least 1− 4e−n. We already computed the eigenvectors ui(D) of D, but there
they had norm

√
n (every entry is either 1 or −1). So, multiplying both sides by

√
n, we obtain

in this normalization that

∥u2(D)− θu2(A)∥2 ≤ C

µ
.

It follows that the signs of most coefficients of θv2(A) and v2(D) must agree. Indeed, we know
that

n∑
j=1

|u2(D)j − θu2(A)j |2 ≤ C

µ2
. (14)

Since the coefficients u2(D)j are all ±1, every coefficient j on which the signs of θv2(A)j and
v2(D)j disagree contributes at least 1 to the sum in Equation 14. Thus the number of disagreeing
signs must be bounded by

C

µ2
.

Summarizing, we can use the vector v2(A) to accurately estimate the vector v2 = v2(D), whose
signs identify the two communities; this guarantee is quite strong as it means that with high-
probability we will only ever make a finite number of mistakes even if the graph were to grow.
This method for community detection is usually called spectral clustering as we are working
with the spectral decomposition of the adjacency matrix. Finally we note that the having then
θ ∈ {−1, 1} factor doesn’t affect the accuracy of the clustering process as it is simply a change
in label; you may have seen this in Gaussian mixture models as well.

4.3 Bernsetin bounds for matrices

In this subsection we are trying to show a concentration bound on the sum of independent ma-
trices instead on a single matrix, with the end goal of providing bounds on covariance estimation
under general assumptions. Recall that we were able to use the fact that

E[exp(t(X + Y ))] = E[exp(tX) exp(tY )],

and use Chernoff’s method to obtain tail bounds if X and Y are real valued random variables.
To generalize this approach we need to define what a matrix exponential means and furthermore
is it true that for matrices A and B:

exp(A) exp(B) = exp(A+B)?

(it’s not!). First let us defined a function of a symmetric matrix:

Definition 10. For a function f : R → R and an n× n symmetric matrix

X =

n∑
i=1

λiuiu
⊤
i ,

define

f(X) :=

n∑
i=1

f(λi)uiu
⊤
i .
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Meaning that we apply the function to the eigenvalues while keeping the eigenvectors constant;
remember that symmetric matrices always have an eigen-decomposition with real eigenvalues.
For a convergent power series expansion of f about x0:

f(x) =

∞∑
k=1

ak(x− x0)
k.

It is the case that series of matrix terms converges, and

f(X) =

∞∑
k=1

ak(X − x0I)
k.

As an example, for each n× n symmetric matrix X we have

eX = I +X +
X2

2!
+
X3

3!
+ · · ·

A useful fact that we will use about matrix exponential is that they have positive eigenvalues.
For example for a symmetric matrix A with positive eigenvalues it is true that:

λmax(A) ≤ Tr[A] ≤ n×maxλmax(A)

as the trace is the sum of the eigenvalues of a matrix. Also recall that we can generalize inequality
on matrices via a partial ordering:

Proposition 12. (Positive semidefinite order). We say

0 ⪯ X,

if X is a symmetric positive semidefinite matrix. And we say

X ⪯ Y

if X − Y ⪯ 0.

A useful fact we will use in the sequel is:

Proposition 13. Let f, g : R → R be two functions. If f(x) ≤ g(x) for all |x| ≤ K, then
f(X) ⪯ g(X) for |A| ≤ K.

Proof. If |A| ≤ K then all of its eigenvalues |λi(A)| ≤ K, therefore:

g(X)− f(X) =

n∑
i=1

g(λi)uiu
⊤
i −

n∑
i=1

f(λi)uiu
⊤
i

=

n∑
i=1

{g(λi)− f(λi)}uiu⊤i ⪰ 0

as g(λi)− f(λi) > 0 for all |λi| ≤ K.

Let us consider two generalization of the property exp(x+ y) = exp(x) exp(y) for matrices.

Theorem 16. (Golden-Thompson inequality). For any n× n symmetric matrices A and B, we
have

tr(eA+B) ≤ tr(eAeB).

39



Unfortunately, Golden-Thompson inequality does not hold for three or more matrices: in
general, the inequality tr(eA+B+C) ≤ tr(eAeBeC) may fail.

Theorem 17. (Lieb’s inequality). Let H be an n×n symmetric matrix. Define the function on
matrices

f(X) := tr exp(H + logX).

Then f is concave on the space on positive definite n× n symmetric matrices.

A proof of matrix Bernstein’s inequality can be based on either Golden-Thompson or Lieb’s
inequalities. We use Lieb’s inequality, which we will now restate for random matrices. If X is a
random matrix, then Lieb’s and Jensen’s inequalities imply that

Ef(X) ⪯ f(EX),

for the function defined in Lieb’s inequality as a matrix function is applied to its eigenvalues
(recall that ⪯ denotes the partial ordering on symmetric matrices). Applying this with X = eZ ,
we obtain the following.

Lemma 8. (Lieb’s inequality for random matrices). Let H be a fixed n × n symmetric matrix
and Z be a random n× n symmetric matrix. Then

Etr exp(H + Z) ≤ tr exp(H + logE exp(Z)).

Proof. This follows from Jensen’s inequality as well as the fact that X = exp(Z) has positive
eigenvalues.

Theorem 18. (Matrix Bernstein’s inequality). Let X1, . . . , XN be independent, mean zero, n×n
symmetric random matrices, such that ∥Xi∥ ≤ K almost surely for all i. Then, for every t ≥ 0,
we have

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∥∥∥∑N

i=1 EX2
i

∥∥∥ is the norm of the matrix variance of the sum.

In particular, we can express this bound as the mixture of sub-gaussian and sub-exponential
tails:

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n exp

[
−c ·min

(
t2

σ2
,
t

K

)]
.

Proof. Step 1: Reduction to MGF. To bound the norm of the sum

S :=

N∑
i=1

Xi,

we need to control the largest and smallest eigenvalues of S. We can do this separately. To put
this formally, consider the largest eigenvalue

λmax(S) := max
i
λi(S)

and note that
∥S∥ = max

i
|λi(S)| = max

(
λmax(S), λmax(−S)

)
.
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We only bound λmax(S), the proof for λmax(−S) is similar. To bound λmax(S), we proceed
with the Chernoff approach as we did in the scalar case for sub-Gaussian and sub-exponential
concentration. Fix λ ≥ 0 and use Markov’s inequality to obtain

P {λmax(S) ≥ t} = P
{
eλ·λmax(S) ≥ eλt

}
≤ e−λtEeλ·λmax(S).

By definition of a function on a matrix the eigenvalues of eS are eλ·λi(S), we have

E := Eeλ·λmax(S) = Eλmax(e
S).

Since the eigenvalues of eS are all positive, the maximal eigenvalue of eS is bounded by the sum
of all eigenvalues, the trace of eS , which leads to

E ≤ Etr eS .

Step 2: Application of Lieb’s inequality. To prepare for an application of Lieb’s in-
equality (Lemma 8), let us separate the last term from the sum S:

E ≤ E tr exp

[
N−1∑
i=1

λXi + λXN

]
= E

{
E tr exp

[
N−1∑
i=1

λXi + λXN

∣∣∣X1, . . . , Xn−1

]}
,

by the law of total expectation. Conditional on (Xi)
N−1
i=1 , we apply Lemma 8 for the fixed matrix

H :=
∑N−1

i=1 λXi and the random matrix Z := λXN and obtain

E ≤ E tr exp

[
N−1∑
i=1

λXi + logEeλXN

]
.

We continue in a similar way: separate the next term λXN−1 from the sum
∑N−1

i=1 λXi and
apply Lemma 8 again for Z = λXN−1. Repeating N times, we obtain

E ≤ tr exp

[
N∑
i=1

logEeλXi

]
.

Step 3: MGF of the individual terms. It remains to bound the matrix-valued moment
generating function EeλXi for each term Xi. This is a standard task, and the argument will be
similar to the scalar case.

Lemma 9. (Moment generating function). Let X be an n × n symmetric mean zero random
matrix such that ∥X∥ ≤ K almost surely. Then

E exp(λX) ⪯ exp
(
g(λ)EX2

)
where g(λ) =

λ2/2

1− |λ|K/3
,

provided that |λ| < 3/K.

Proof. First, note that we can bound the (scalar) exponential function by the first few terms
of its Taylor’s expansion as follows:

ez ≤ 1 + z +
1

1− |z|/3
· z

2

2
, if |z| < 3.
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(To get this inequality, write ez = 1+ z+ z2 ·
∑∞

p=2 z
p−2/p! and use the bound p! ≥ 2 · 3p−2.)

Next, apply this inequality for z = λx. If |x| ≤ K and |λ| < 3/K then we obtain

eλx ≤ 1 + λx+ g(λ)x2,

where g(λ) is the function in the statement of the lemma.
Finally, we can transfer this inequality from scalars to matrices using Lemma [X]. We obtain

that if ∥X∥ ≤ K and |λ| < 3/K, then

eλX ⪯ I + λX + g(λ)X2.

Take expectation of both sides and use the assumption that EX = 0 to obtain

EeλX ⪯ I + g(λ)EX2.

To bound the right hand side, we may use the inequality 1+z ≤ ez which holds for all scalars
z. Thus the inequality I + Z ⪯ eZ holds for all matrices Z, and in particular for Z = g(λ)EX2.
This yields the conclusion of the lemma.

Step 4: Completion of the proof. Let us return to bounding E. Using the bound of the
MGFs, we obtain

E ≤ tr exp

[
N∑
i=1

logEeλXi

]
≤ tr exp [g(λ)Z] , where Z :=

N∑
i=1

EX2
i .

Since the trace of exp [g(λ)Z] is a sum of n positive eigenvalues, it is bounded by n times the
maximum eigenvalue, so

E ≤ n · λmax (exp [g(λ)Z]) = n · exp [g(λ)λmax(Z)]

= n · exp [g(λ)∥Z∥] (since Z ⪰ 0)

= n · exp
[
g(λ)σ2

]
(by definition of σ) .

Plugging this bound for E = E eλ·λmax(S)

P {λmax(S) ≥ t} ≤ n · exp
[
−λt+ g(λ)σ2

]
.

We can choose the following value: λ = t/(σ2+Kt/3) to make the expression simper instead
of direct minimization (which you can do and then realize it’s not worth doing like I did).
Substituting it into the bound above and simplifying yields

P {λmax(S) ≥ t} ≤ n · exp
(
− t2/2

σ2 +Kt/3

)
.

Repeating the argument for −S and combining the two bounds gives the desired conclusion.

You can integrated the tail probability to obtain the following bound on the expectation of
the operator norm as well:

Lemma 10. (Matrix Bernstein’s inequality: expectation).: Let X1, . . . , XN be independent, mean
zero, n× n symmetric random matrices, such that ∥Xi∥ ≤ K almost surely for all i. Then

E

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≲

∥∥∥∥∥
N∑
i=1

EX2
i

∥∥∥∥∥
1/2√

1 + log n+K(1 + log n).

We wil use this to bound the estimation error of covariance matrices in the subsection to
follow.

42



4.4 Application: covariance estimation for general distributions

In this section we will derive bounds for estimating covariance matrices of random vectors which
have bounded L2 norm. We estimate the second moment matrix Σ = EXXT by its sample
version

Σ̂ =
1

n

n∑
i=1

XiX
T
i .

If X has zero mean, then Σ is the covariance matrix of X and Σm covariance matrix of X. We
first show the bound in expectation and provide a tail bound following this.

First let us consider the bound that we would have obtained if we assume that the matrix is
sub-Gaussian and then relax this condition using Bernstein’s bound instead:

Theorem 19. Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[Y Y ⊤] = Id and Y ∼
subGd(1). Let X1, . . . , Xn be n independent copies of sub-Gaussian random vector X = Σ1/2Y .
Then E[X] = 0, E[XX⊤] = Σ and X ∼ subGd(∥Σ∥op). Moreover,

∥Σ̂− Σ∥ ≲ ∥Σ∥

(√
d+ log(1/δ)

n
∨ d+ log(1/δ)

n

)
,

with probability 1− δ.

Theorem 20. (General covariance estimation). Let X be a random vector in Rd, d ≥ 2. Assume
that for some K ≥ 1,

∥X∥2 ≤ K(E∥X∥2)1/2 almost surely. (15)

Then, for every positive integer m, we have

E∥Σm − Σ∥ ≤ C

(√
K2d log d

n
+
K2d log d

n

)
∥Σ∥.

Proof. Before we start proving the bound, let us pause to note that E∥X∥22 = tr(Σ). So the
assumption (15) becomes

∥X∥22 ≤ K2 tr(Σ) almost surely. (16)

Lemma 10 for the sum of i.i.d. mean zero random matrices XiX
T
i − Σ to show

E∥Σ̂− Σ∥ =
1

n
E

∥∥∥∥∥
n∑

i=1

(XiX
T
i − Σ)

∥∥∥∥∥ ≲
1

n

(
σ
√
log d+M log d

)
(17)

where

σ2 =

∥∥∥∥∥
n∑

i=1

E(XiX
⊤
i − Σ)2

∥∥∥∥∥ = n
∥∥E(XX⊤ − Σ)2

∥∥
and M is any number chosen so that

∥XX⊤ − Σ∥ ≤M almost surely.

To complete the proof, it remains to bound σ2 and M . Let us start with σ2. Expanding the
square, we find that

E(XX⊤ − Σ)2 = E(XX⊤)2 − Σ2 ⪯ E(XX⊤)2.
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Further, the assumption (16) gives

(XX⊤)2 = ∥X∥2XX⊤ ⪯ K2 tr(Σ)XX⊤.

Taking expectation and recalling that EXX⊤ = Σ, we obtain

E(XX⊤)2 ⪯ K2 tr(Σ)Σ.

Substituting this bound into the expression for σ, we obtain the following

σ2 ≤ K2n tr(Σ)∥Σ∥.

Now we bound M ,

∥XX⊤ − Σ∥ ≤ ∥X∥22 + ∥Σ∥ (by triangle inequality)

≤ K2 tr(Σ) + ∥Σ∥ (by assumption (16))

≤ 2K2 tr(Σ) =:M (since ∥Σ∥ ≤ tr(Σ) and K ≥ 1).

Substituting our bounds for σ and M into (17), we get

E∥Σ̂− Σ∥ ≤ 1

n

(√
K2n tr(Σ)∥Σ∥ ·

√
log d+ 2K2 tr(Σ) · log d

)
.

To complete the proof, use the inequality tr(Σ) ≤ n∥Σ∥ and simplify the above.

As for the tail bound, we can obtain the following:

Lemma 11. Under the same assumption as the previous theorem,we have

∥Σ̂− Σ∥ ≲ ∥Σ∥

(√
K2d(log d+ log(2/δ))

n
+
K2d(log d+ log(2/δ))

n

)
with probability at least 1− δ.

Assuming that our distribution has bounded norm effectively has only added another loga-
rithmic factor compared to our sub-Gaussian bounds. To use this bound for unbounded vectors,
you can remove the boundedness assumption by a truncation argument and then bounding the
bias this induces on the estimate, where you can trade off the bias and the concentration gain
for the optimal tresholding (or just try to find another bound that works for your problem!).

4.5 Principal component analysis

Before we begin, recall the following useful fact about approximating matrices with a truncated
singular value decomposition:

Lemma 12. (Eckart-Young-Mirsky) Let A be a rank-r matrix with singular value decomposition

A =

r∑
i=1

λiuiv
⊤
i ,

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the ordered singular values of A. For any k < r, let Ak be the
truncated singular value decomposition of A given by

Ak =

k∑
i=1

λiuiv
⊤
i ,
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for k ≤ r. Then for any matrix B such that rank(B) ≤ k, it holds

∥A−Ak∥F ≤ ∥A−B∥F .

Moreover,

∥A−Ak∥2F =

r∑
j=k+1

λ2j .

Proof. Note that the last equality of the lemma is obvious since

A−Ak =

r∑
j=k+1

λjujv
⊤
j .

Thus, it is sufficient to prove that for any matrix B such that rank(B) ≤ k, it holds

∥A−B∥2F ≥
r∑

j=k+1

λ2j .

denote the ordered singular values of B by σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 —some may be equal to zero
if rank(B) < k—and observe that it follows from the Hoffman-Weilandt inequality that

∥A−B∥2F ≥
r∑

j=1

(λj − σj)
2 =

k∑
j=1

(λj − σj)
2 +

r∑
j=k+1

λ2j ≥
r∑

j=k+1

λ2j .

Principal component analysis (PCA) is a commonly used method of dimensionality reduction.
For PCA to work, we assume that the data we observe approximately lives on a lower dimensional
linear sub-space, or some transformation of the data lives on a lower dimensional subspace. We
begin with the simplest case possible in which all of the data approximately lives on an one
dimensional line. Let us first consider a reasonable model from which we can observe such a
dataset.

For a fixed direction v ∈ Sd−1, and consider the sequence Y1, . . . , Yn ∼ N(0, Id), then the
vectors v⊤Yiv all live in the one dimensional space spanned by v. Typically we would have some
noise in our observations so that they will be closer to:

Xi = v⊤Yiv + Zi,

for a noise vector Zi ∼ N(0, σ2Id). If the noise is small enough then we can hope to recover the
direction v from the observations Xi. Note that the covariance matrix of Xi will be:

Σ = E
[
XX⊤] = vv⊤ + σ2Id.

This model is called the spiked covariance model (with a single spike), we can rescale by σ2 in
order to obtain the following definition:

Definition 11. A covariance matrix Σ ∈ Rd×d is a spiked covariance matrix if:

Σ = θvv⊤ + Id,

for θ > 0 and v ∈ Sd−1. The vector v is called the spike.
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The largest eigenvalue of this matrix is 1 + θ and its associated eigenvector will be v. This
suggests the strategy of using the the estimated covariance matrix to find the principal eigendi-
rection and to use it as our estimated sub-space. Luckily we already have bounds on how well a
covariance matrix will be estimated

Corollary 2. Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[Y Y T ] = Id and Y ∼
subGd(1). Let X1, . . . , Xn be n independent copies of sub-Gaussian random vector X = Σ1/2Y
so that E[X] = 0, E[XXT ] = Σ and X ∼ subGd(∥Σ∥op). Assume further that Σ = θvvT + Id
satisfies the spiked covariance model. Then, the largest eigenvector v̂ of the empirical covariance
matrix Σ̂ satisfies,

min
e∈{+1}

∥ev̂ − v∥2 ≲
1 + θ

min(θ, 1)

(√
d+ log(1/δ)

n
∨ d+ log(1/δ)

n

)
with probability 1− δ.

Proof. We have shown the two pieces we need to show the result already, first we appeal to
Davis-Kahan which implies that:

∥v1(Σ)− v1(Σ̂)∥ ≤ 23/2
∥Σ− Σ̂∥

δ
,

where δ = mini minj ̸=i |λi(Σ) − λj(Σ)| = min(θ, 1), therefore substituting the sub-Gaussian

bound for ∥Σ̂− Σ∥ into the above we have the desired result.

Remark 5. The exposition form this section was taken from Rigollet and Hütter (2023) but
slightly modified as we used the stronger version of Davis-Kahan presented in Vershynin (2018),
so don’t be confused if these don’t quite match up.

Remark 6. You can do the same for non-sub-Gaussian vectors by replicating the proof but
substitute whatever bound for ∥Σ̂−Σ∥ that you have, for example the Bernstein bound for general
matrices.

Another question to ask is if there exists a sparse eigenvector v that would have performed
similarly; maybe we want a pasrsimonious explanation for the problem at hand. Furthermore,
should the true v be sparse, then we would expect a better rate of convergence should we
restrict or penalize this problem accordingly similar to LASSO. If we assume that v in the spiked
covariance model is k-sparse: |v|0 = k. Therefore, a natural candidate to estimate v is given by
v̂ defined by

v̂⊤Σ̂v̂ = max
u∈Sd−1, |u|0=k

u⊤Σ̂u.

We call λkmax(Σ̂) the k-sparse leading eigenvalue of Σ̂ and v̂ a k-sparse leading eigenvector.

Theorem 21. Let Y ∈ Rd be a random vector such that E[Y ] = 0, E[Y Y ⊤] = Id and Y ∼
subGd(1). Let X1, . . . , Xn be n independent copies of sub-Gaussian random vector X = Σ1/2Y
so that E[X] = 0, E[XX⊤] = Σ and X ∼ subGd(∥Σ∥op). Assume further that Σ = θvv⊤ + Id
satisfies the spiked covariance model for v such that |v|0 = k ≤ d/2. Then, the k-sparse largest
eigenvector v̂ of the empirical covariance matrix satisfies,

min
ε∈{±1}

∥εv̂ − v∥2 ≲
1 + θ

min(θ, 1)

(√
k log(ed/k) + log(1/δ)

n
∨ k log(ed/k) + log(1/δ)

n

)
.

with probability 1− δ.
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This bound should look familiar as essentially it replicates the same rates as the manual
search over all possible sparse sets in linear regression. Although we need to search over all
possible sparse components which is computationally difficult for large dimensional vectors. You
can look for variants of sparse PCA which are convex relaxations of this problem.

4.6 Sub-Gaussian matrix regression model

A simple question to ask is can we extend the classical regression set up to matrices? Specifically,
is it useful to consider a model such that:

Y = XΘ⋆ + E,

where Y ∈ Rn×T , X ∈ Rn×d and Θ ∈ Rd×T is the unkown matrix of coefficents for some noise
matrix E ∼ subGn×T (σ). You can also think of this as a multiple regression model where we use
features to predict for multiple traits at once; for a more concerete example you can consider a
medical problem where we measure mutliple traits from each patient such as resting heart rate,
bmi and blood sugar levels and we want to see how some genetic factors (X) will influence all of
these traits. Note that it is possible to perform seperate regressions on each trait individually,
but in doing so we might lose some depedency that exists between bmi and resting heart rate
for example; the matrix formulation allows us to share some information across relevant traits.
Along with our definition of sub-Gaussian random vectors we defined the sub-Gaussian random
matrix:

Definition 12. We call a n×m matrix A subGn×m(σ) if for every x ∈ Sm−1 and y ∈ Sn−1 if:

y⊤Ax ∼ subG(σ2).

As with LASSO we begin with proving MSE bounds on the predictive performance of our
proposed procedures. We are going to make our life simple (at first) and assume that we have
an orthogonal design (ORT condition) for our design matrix, i.e., X⊤X = nId. Under the ORT
assumption,

1

n
X⊤Y = Θ∗ +

1

n
X⊤E.

Which can be written as an equation in Rd×T called the sub-Gaussian matrix model (sGMM):

y = Θ∗ + F,

where y = 1
nX

⊤Y and F = 1
nX

⊤E ∼ subGd×T (σ
2/n). For any u ∈ Sd−1, v ∈ ST−1, it holds

u⊤Fv =
1

n
(Xu)⊤Ev =

1√
n
w⊤Ev ∼ subG(σ2/n),

where w = Xu/
√
n has unit norm: ∥w∥22 = u⊤X⊤X

n u = |u|22 = 1.
We now have a direct observation model, meaning that we observe the parameter of interest

with some additive noise, similar to the example on the schochastic block model with the adja-
cency matrix. If Θ∗ is low-rank, which is equivalent to sparsity in its unknown eigenbasis, then
we can hope to have good performance on the prediction problem. Should this Θ⋆ not be sparse
then it would be too difficult to estimate from a single observation. Consider the SVD of Θ∗:

Θ∗ =
∑
j

λjujv
⊤
j .
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and define ∥Θ∗∥0 := |λ|0. Consider the SVD of the observed matrix y:

y =
∑
j

λ̂j ûj v̂
⊤
j .

We can treshold the singular values of y and use their associated basis vectors to estimate Θ⋆.

Definition 13. The singular value thresholding estimator with threshold 2τ ≥ 0 is defined
by

Θ̂SVT =
∑
j

λ̂jI(|λ̂j | > τn)ûj v̂
⊤
j .

Intuitively we want this threshold to be around the “size” of the noise with high probability
so that it doesn’t cut off any of the signals. Specifically, the following lemma will allow us to
control the operator norm of the matrix F , which is the greatest singular value of the noise
matrix.

Lemma 13. Let A be a d× T random matrix such that A ∼ subGd×T (σ
2). Then

∥A∥op ≤ 4σ
√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ)

with probability 1− δ.

This Lemma is essentially the same as Theorem 14, except for the fact that we don’t have
independent entries, the proof is the same except for the concentration step where we simply
need to use the definition of a sub-Gaussian matrix.

Theorem 22. Consider the multivariate linear regression model under the assumption ORT
or, equivalently, the sub-Gaussian matrix model. Then, the singular value thresholding estimator
Θ̂SVT with threshold

τn = 8σ

√
log(12)(d ∨ T )

n
+ 4σ

√
2 log(1/δ)

n
,

satisfies
1

n
∥X̄Θ̂SVT − X̄Θ∗∥2F = ∥Θ̂SVT −Θ∗∥2F ≤ 36 rank(Θ∗)τ2

≲
σ2 rank(Θ∗)

n
(d ∨ T + log(1/δ)) .

with probability 1− δ.

Proof. Assume without loss of generality that the singular values of Θ∗ and y are arranged in a
non-increasing order: λ1 ≥ λ2 ≥ . . . and λ̂1 ≥ λ̂2 ≥ . . .. Define the set

S = {j : |λ̂j | > τn}.

Observe first that it follows from Lemma 11 that ∥F∥ ≤ τn/2 for τn on an event A such that
P(A) ≥ 1− δ. The rest of the proof assumes that the event A occurred.

From Weyl’s inequality: |λ̂j − λj | ≤ ∥F∥ ≤ τn/2. It implies that S ⊂ {j : |λj | > τ2/2} and
Sc ⊂ {j : |λj | ≤ 3τn/2}. Next define the oracle Θ̄ =

∑
j∈S λjujv

T
j and note that

∥Θ̂SVT −Θ∗∥2F ≤ 2∥Θ̂SVT − Θ̄∥2F + 2∥Θ̄−Θ∗∥2F .
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Using the Hölder inequality, we control the first term as follows

∥Θ̂SVT − Θ̄∥2F ≤ rank(Θ̂SVT − Θ̄)∥Θ̂SVT − Θ̄∥2op ≤ 2|S|∥Θ̂SVT − Θ̄∥2op.

Moreover,
∥Θ̂SVT − Θ̄∥op ≤ ∥Θ̂SVT − y∥op + ∥y −Θ∗∥op + ∥Θ∗ − Θ̄∥op

≤ max
j∈Sc

|λ̂j |+ τ +max
j∈Sc

|λj | ≤ 3τn.

Therefore,

∥Θ̂SVT − Θ̄∥2F ≤ 18|S|τ2 = 18
∑
j∈S

τ2.

The second term can be written as

∥Θ̄−Θ∗∥2F =
∑
j∈Sc

λ2j .

Plugging the above two displays in (5.4), we get

∥Θ̂SVT −Θ∗∥2F ≤ 18
∑
j∈S

τ2 +
∑
j∈Sc

λ2j .

Since on S, τ2 = min(τ2, |λj |2) and on Sc, |λj |2 ≤ 18min(τ2, |λj |2), it yields,

∥Θ̂SVT −Θ∗∥2F ≤ 36
∑
j

min(τ2, |λj |2)

= 36 rank(Θ∗)τ2.

We consider penalizing the rank of the matrix instead of direct truncation in cases when
we don’t have the ORT assumption. Let Θ̂RK be any solution to the following minimization
problem:

min
Θ∈Rd×T

{
1

n
∥Y −XΘ∥2F + τ2n rank(Θ)

}
.

At first it seems this is a bad idea since it looks very close to using size of the non-zero subset S
in the LASSO problem as a penelty which we know isn’t computationally pheasible. However in
this case it turns out to not be such a bad idea as this can be computed efficiently.

This estimator is called estimator by rank penalization with regularization parameter τn.

Theorem 23. Consider the multivariate linear regression model with sub-Gaussian errors of
proxy variance σ2. Then, the estimator by rank penalization Θ̂RK with regularization parameter
τ2, where τ is defined in Theorem 22, satisfies

1

n
∥XΘ̂RK −XΘ∗∥2F ≤ 2 rank(Θ∗)τ2 ≲

σ2 rank(Θ∗)

n

(
d
√
T + log(1/δ)

)
,

with probability 1− δ.
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It follows from Theorem 23 that the estimator by rank penalization enjoys the same properties
as the singular value thresholding estimator even when X does not satisfy the ORT condition.
While the rank penalty, just like the sparsity penalty, is not convex, it turns out that Θ̂RK can
be computed efficiently.

Note first that

min
Θ∈Rd×T

1

n
∥Y −XΘ∥2F + τ2n rank(Θ) = min

k

{
1

n
min

Θ∈Rd×T ,rank(Θ)≤k
∥Y −XΘ∥2F + τ2nk

}
.

Therefore, it remains to show that

min
Θ∈Rd×T ,rank(Θ)≤k

∥Y −XΘ∥2F ,

can be computed efficiently. To that end, let Ȳ = X(XTX)+XTY denote the orthogonal
projection of Y onto the image space of X. This is a linear operator from Rd×T into Rn×T . By
the Pythagorean theorem, we get for any Θ ∈ Rd×T ,

∥Y −XΘ∥2F = ∥Y − Ȳ ∥2F + ∥Ȳ −XΘ∥2F .

Next, consider the SVD of Ȳ :

Ȳ =
∑
j

λjujv
T
j

where λ1 ≥ λ2 ≥ . . . and define Ỹ by

Ỹ =

k∑
j=1

λjujv
T
j .

By Ekart-Young, it holds

∥Ȳ − Ỹ ∥2F = min
Z:rank(Z)≤k

∥Ȳ − Z∥2F .

Therefore, any minimizer of XΘ → ∥Y − XΘ∥2F over matrices of rank at most k can be
obtained by truncating the SVD of Ȳ at order k.
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Remark 7. Why are you still reading this?
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